咨询与建议

限定检索结果

文献类型

  • 50,479 篇 会议
  • 1,421 册 图书
  • 1,041 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 52,940 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 31,811 篇 工学
    • 24,804 篇 计算机科学与技术...
    • 12,568 篇 软件工程
    • 5,153 篇 光学工程
    • 4,756 篇 电气工程
    • 4,436 篇 信息与通信工程
    • 4,257 篇 机械工程
    • 3,956 篇 控制科学与工程
    • 2,474 篇 生物工程
    • 1,728 篇 生物医学工程(可授...
    • 1,584 篇 仪器科学与技术
    • 1,317 篇 电子科学与技术(可...
    • 793 篇 化学工程与技术
    • 698 篇 安全科学与工程
    • 542 篇 交通运输工程
    • 379 篇 建筑学
    • 331 篇 土木工程
  • 11,839 篇 理学
    • 6,434 篇 物理学
    • 5,405 篇 数学
    • 2,761 篇 生物学
    • 1,910 篇 统计学(可授理学、...
    • 801 篇 化学
    • 669 篇 系统科学
  • 5,305 篇 医学
    • 5,094 篇 临床医学
    • 729 篇 基础医学(可授医学...
    • 459 篇 药学(可授医学、理...
  • 3,350 篇 管理学
    • 1,953 篇 图书情报与档案管...
    • 1,535 篇 管理科学与工程(可...
    • 479 篇 工商管理
  • 720 篇 艺术学
    • 718 篇 设计学(可授艺术学...
  • 428 篇 法学
    • 401 篇 社会学
  • 297 篇 农学
  • 197 篇 教育学
  • 163 篇 经济学
  • 63 篇 文学
  • 49 篇 军事学

主题

  • 17,385 篇 computer vision
  • 9,017 篇 pattern recognit...
  • 4,196 篇 training
  • 3,815 篇 feature extracti...
  • 3,134 篇 cameras
  • 2,870 篇 computational mo...
  • 2,789 篇 image segmentati...
  • 2,622 篇 visualization
  • 2,573 篇 shape
  • 2,533 篇 face recognition
  • 2,171 篇 robustness
  • 2,123 篇 computer science
  • 1,973 篇 object detection
  • 1,959 篇 computer archite...
  • 1,878 篇 layout
  • 1,853 篇 object recogniti...
  • 1,802 篇 three-dimensiona...
  • 1,725 篇 neural networks
  • 1,708 篇 humans
  • 1,691 篇 image recognitio...

机构

  • 165 篇 univ chinese aca...
  • 144 篇 tsinghua univers...
  • 136 篇 national laborat...
  • 108 篇 univ sci & techn...
  • 104 篇 zhejiang univers...
  • 100 篇 shanghai jiao to...
  • 95 篇 microsoft resear...
  • 94 篇 university of sc...
  • 86 篇 zhejiang univ pe...
  • 84 篇 shanghai ai lab ...
  • 74 篇 school of comput...
  • 69 篇 computer vision ...
  • 68 篇 peking univ peop...
  • 68 篇 chinese acad sci...
  • 65 篇 chinese univ hon...
  • 63 篇 institute of inf...
  • 62 篇 google res mount...
  • 61 篇 univ oxford oxfo...
  • 59 篇 univ toronto on
  • 57 篇 swiss fed inst t...

作者

  • 91 篇 van gool luc
  • 87 篇 umapada pal
  • 76 篇 zhang lei
  • 64 篇 lee seong-whan
  • 49 篇 vittorio murino
  • 42 篇 yang yi
  • 34 篇 nassir navab
  • 33 篇 li xin
  • 33 篇 jie yang
  • 32 篇 liu yang
  • 31 篇 escalera sergio
  • 31 篇 loy chen change
  • 30 篇 ling haibin
  • 30 篇 h. bischof
  • 29 篇 zhou jie
  • 29 篇 vasconcelos nuno
  • 29 篇 jan-michael frah...
  • 29 篇 hanqing lu
  • 28 篇 blumenstein mich...
  • 27 篇 jia yunde

语言

  • 51,871 篇 英文
  • 835 篇 其他
  • 241 篇 中文
  • 22 篇 土耳其文
  • 5 篇 西班牙文
  • 2 篇 日文
  • 2 篇 葡萄牙文
  • 2 篇 俄文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition"
52943 条 记 录,以下是4871-4880 订阅
排序:
SetVAE: Learning Hierarchical Composition for Generative Modeling of Set-Structured Data
SetVAE: Learning Hierarchical Composition for Generative Mod...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kim, Jinwoo Yoo, Jaehoon Lee, Juho Hong, Seunghoon Korea Adv Inst Sci & Technol Daejeon South Korea
Generative modeling of set-structured data, such as point clouds, requires reasoning over local and global structures at various scales. However, adopting multi-scale frameworks for ordinary sequential data to a set-s... 详细信息
来源: 评论
Learning to Segment Rigid Motions from Two Frames
Learning to Segment Rigid Motions from Two Frames
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Gengshan Ramanan, Deva Carnegie Mellon Univ Pittsburgh PA 15213 USA Argo AI Pittsburgh PA USA
Appearance-based detectors achieve remarkable performance on common scenes, benefiting from high-capacity models and massive annotated data, but tend to fail for scenarios that lack training data. Geometric motion seg... 详细信息
来源: 评论
Differentiable Diffusion for Dense Depth Estimation from Multi-view Images
Differentiable Diffusion for Dense Depth Estimation from Mul...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Khan, Numair Kim, Min H. Tompkin, James Brown Univ Providence RI 02912 USA Korea Adv Inst Sci & Technol Daejeon South Korea
We present a method to estimate dense depth by optimizing a sparse set of points such that their diffusion into a depth map minimizes a multi-view repmjection error from RGB supervision. We optimize point positions, d... 详细信息
来源: 评论
From Activation to Initialization: Scaling Insights for Optimizing Neural Fields
From Activation to Initialization: Scaling Insights for Opti...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Hemanth Saratchandran Sameera Ramasinghe Simon Lucey Australian Institute of Machine Learning University of Adelaide Australia Amazon Australia
In the realm of computer vision, Neural Fields have gained prominence as a contemporary tool harnessing neural networks for signal representation. Despite the remarkable progress in adapting these networks to solve a ... 详细信息
来源: 评论
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Tran...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Huiyu Zhu, Yukun Adam, Hartwig Yuille, Alan Chen, Liang-Chieh Johns Hopkins Univ Baltimore MD 21218 USA Google Res Mountain View CA USA Google Mountain View CA 94043 USA
We present MaX-DeepLab, the first end-to-end model for panoptic segmentation. Our approach simplifies the current pipeline that depends heavily on surrogate sub-tasks and hand-designed components, such as box detectio... 详细信息
来源: 评论
Source-Free Domain Adaptation for Semantic Segmentation
Source-Free Domain Adaptation for Semantic Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yuang Zhang, Wei Wang, Jun East China Normal Univ Shanghai Peoples R China
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network (CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive... 详细信息
来源: 评论
Learning Position and Target Consistency for Memory-based Video Object Segmentation
Learning Position and Target Consistency for Memory-based Vi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hu, Li Zhang, Peng Zhang, Bang Pan, Pan Xu, Yinghui Jin, Rong Alibaba Grp Machine Intelligence Technol Lab Hangzhou Peoples R China
This paper studies the problem of semi-supervised video object segmentation(VOS). Multiple works have shown that memory-based approaches can be effective for video object segmentation. They are mostly based on pixel-l... 详细信息
来源: 评论
Animating Pictures with Eulerian Motion Fields
Animating Pictures with Eulerian Motion Fields
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Holynski, Aleksander Curless, Brian Seitz, Steven M. Szeliski, Richard Univ Washington Seattle WA 98195 USA
In this paper, we demonstrate a fully automatic method for converting a still image into a realistic animated looping video. We target scenes with continuous fluid motion, such as flowing water and billowing smoke. Ou... 详细信息
来源: 评论
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks
PU-GCN: Point Cloud Upsampling using Graph Convolutional Net...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Qian, Guocheng Abualshour, Abdulellah Li, Guohao Thabet, Ali Ghanem, Bernard King Abdullah Univ Sci & Technol KAUST Abu Dhabi U Arab Emirates
The effectiveness of learning-based point cloud upsampling pipelines heavily relies on the upsampling modules and feature extractors used therein. For the point upsampling module, we propose a novel model called NodeS... 详细信息
来源: 评论
Video Object Segmentation Using Global and Instance Embedding Learning
Video Object Segmentation Using Global and Instance Embeddin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ge, Wenbin Lu, Xiankai Shen, Jianbing Beijing Inst Technol Beijing Peoples R China Shandong Univ Sch Software Jinan Peoples R China Incept Inst Artificial Intelligence Beijing Peoples R China
In this paper, we propose a feature embedding based video object segmentation (VOS) method which is simple, fast and effective. The current VOS task involves two main challenges: object instance differentiation and cr... 详细信息
来源: 评论