In this paper we present a flash game that aims at generating easily ground truth for testing object detection algorithms. Flash the Fish is an online game where the user is shown videos from underwater environments a...
详细信息
ISBN:
(纸本)9780769549903
In this paper we present a flash game that aims at generating easily ground truth for testing object detection algorithms. Flash the Fish is an online game where the user is shown videos from underwater environments and has to take photos of fish by clicking on them. The initial ground truth is provided by object detection algorithms and, subsequent, cluster analysis and user evaluation techniques, allow for the generation of ground truth based on the weighted combination of these "photos". Evaluation of the platform and comparison of the obtained results against a hand drawn ground truth confirmed that reliable ground truth generation is not necessarily a cumbersome task both in terms of effort and time needed.
Understanding the complex relationship between emotions and facial expressions is important for both psychologists and computer scientists. A large body of research in psychology investigates facial expressions, emoti...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Understanding the complex relationship between emotions and facial expressions is important for both psychologists and computer scientists. A large body of research in psychology investigates facial expressions, emotions, and how emotions are perceived from facial expressions. As computer scientists look to incorporate this research into automatic emotion perception systems, it is important to understand the nature and limitations of human emotion perception. These principles of emotion science affect the way datasets are created, methods are implemented, and results are interpreted in automated emotion perception. This paper aims to distill and align prior work in automated and human facial emotion perception to facilitate future discussions and research at the intersection of the two disciplines.
Trajectory prediction is an important task in autonomous driving. State-of-the-art trajectory prediction models often use attention mechanisms to model the interaction between agents. In this paper, we show that the a...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Trajectory prediction is an important task in autonomous driving. State-of-the-art trajectory prediction models often use attention mechanisms to model the interaction between agents. In this paper, we show that the attention information from such models can also be used to measure the importance of each agent with respect to the ego vehicle's future planned trajectory. Our experiment results on the nuPlans dataset show that our method can effectively find and rank surrounding agents by their impact on the ego's plan.
Recent research has shown that faces can be obfuscated in large-scale datasets with a minimal performance impact on image classification and downstream tasks like object recognition. In this paper, we investigate the ...
详细信息
ISBN:
(纸本)9781665448994
Recent research has shown that faces can be obfuscated in large-scale datasets with a minimal performance impact on image classification and downstream tasks like object recognition. In this paper, we investigate the role of face obfuscation in video classification datasets and quantify a more significant reduction in performance caused by face blurring. To reduce such performance effects, we propose a generalized distillation approach in which a privacy-preserving action recognition network is trained with privileged information given by face identities. We show, through experiments performed on Kinetics-400, that the proposed approach can fully close the performance gap caused by face anonymization.
The use of 3D technologies to represent elements and interact with them is an open and interesting research area. In this article we discuss a novel human computer interaction method that integrates mobile computing a...
详细信息
ISBN:
(纸本)9780769549903
The use of 3D technologies to represent elements and interact with them is an open and interesting research area. In this article we discuss a novel human computer interaction method that integrates mobile computing and 3D visualization techniques with applications on free viewpoint visualization and 3D rendering for interactive and realistic environments. Especially this approach is focused on augmented reality and home entertainment and it was developed and tested on mobiles and particularly on tablet computers. Finally, an evaluation mechanism on the accuracy of this interaction system is presented.
In this paper, we introduce a challenging new dataset, MLB-YouTube, designed for fine-grained activity detection. The dataset contains two settings: segmented video classification as well as activity detection in cont...
详细信息
ISBN:
(数字)9781538661000
ISBN:
(纸本)9781538661000
In this paper, we introduce a challenging new dataset, MLB-YouTube, designed for fine-grained activity detection. The dataset contains two settings: segmented video classification as well as activity detection in continuous videos. We experimentally compare various recognition approaches capturing temporal structure in activity videos, by classifying segmented videos and extending those approaches to continuous videos. We also compare models on the extremely difficult task of predicting pitch speed and pitch type from broadcast baseball videos. We find that learning temporal structure is valuable for fine-grained activity recognition.
We present a vision-based method for signer diarization - the task of automatically determining "who signed when?" in a video. This task has similar motivations and applications as speaker diarization but ha...
详细信息
ISBN:
(纸本)9780769549903
We present a vision-based method for signer diarization - the task of automatically determining "who signed when?" in a video. This task has similar motivations and applications as speaker diarization but has received little attention in the literature. In this paper, we motivate the problem and propose a method for solving it. The method is based on the hypothesis that signers make more movements than their interlocutors. Experiments on four videos (a total of 1.4 hours and each consisting of two signers) show the applicability of the method. The best diarization error rate (DER) obtained is 0.16.
Traditional empirical risk minimization (ERM) for semantic segmentation can disproportionately advantage or disadvantage certain target classes in favor of an (unfair but) improved overall performance. Inspired by the...
详细信息
ISBN:
(纸本)9781665448994
Traditional empirical risk minimization (ERM) for semantic segmentation can disproportionately advantage or disadvantage certain target classes in favor of an (unfair but) improved overall performance. Inspired by the recently introduced tilted ERM (TERM), we propose tilted cross-entropy (TCE) loss and adapt it to the semantic segmentation setting to minimize performance disparity among target classes and promote fairness. Through quantitative and qualitative performance analyses, we demonstrate that the proposed Stochastic TCE for semantic segmentation can offer improved overall fairness by efficiently minimizing the performance disparity among the target classes of Cityscapes.
We propose SCVRL, a novel contrastive-based framework for self-supervised learning for videos. Differently from previous contrast learning based methods that mostly focus on learning visual semantics (e.g., CVRL), SCV...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We propose SCVRL, a novel contrastive-based framework for self-supervised learning for videos. Differently from previous contrast learning based methods that mostly focus on learning visual semantics (e.g., CVRL), SCVRL is capable of learning both semantic and motion patterns. For that, we reformulate the popular shuffling pretext task within a modern contrastive learning paradigm. We show that our transformer-based network has a natural capacity to learn motion in self-supervised settings and achieves strong performance, outperforming CVRL on four benchmarks.
Translation symmetry is one of the most important pattern characteristics in natural and man-made environments. Detecting translation symmetry is a grand challenge in computervision. This has a large spectrum of real...
详细信息
ISBN:
(纸本)9780769549903
Translation symmetry is one of the most important pattern characteristics in natural and man-made environments. Detecting translation symmetry is a grand challenge in computervision. This has a large spectrum of real-world applications from industrial settings to design, arts, entertainment and eduction. This paper describes the algorithm we have submitted for the Symmetry Detection Competition 2013. We introduce two new concepts in our symmetric repetitive pattern detection algorithm. The first concept is the bottom-up detection-inference approach. This extends the versatility of current detection methods to a higher level segmentation. The second concept is the framework of a new theoretical analysis of invariant repetitive patterns. This is crucial in symmetry/non-symmetry structure extraction but has less coverage in the previous literature on pattern detection and classification.
暂无评论