咨询与建议

限定检索结果

文献类型

  • 23,000 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,217 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 86 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,241 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,186 篇 computer vision
  • 3,966 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 52 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23218 条 记 录,以下是1071-1080 订阅
排序:
Masked vision Transformers for Hyperspectral Image Classification
Masked Vision Transformers for Hyperspectral Image Classific...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Scheibenreif, Linus Mommert, Michael Borth, Damian University of St. Gallen Aiml Lab School of Computer Science Switzerland
Transformer architectures have become state-of-the-art models in computer vision and natural language processing. To a significant degree, their success can be attributed to self-supervised pre-training on large scale... 详细信息
来源: 评论
Quality-aware Pre-trained Models for Blind Image Quality Assessment
Quality-aware Pre-trained Models for Blind Image Quality Ass...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Kai Yuan, Kun Sun, Ming Li, Mading Wen, Xing Kuaishou Technol Beijing Peoples R China
Blind image quality assessment (BIQA) aims to automatically evaluate the perceived quality of a single image, whose performance has been improved by deep learning-based methods in recent years. However, the paucity of... 详细信息
来源: 评论
Ambiguous Medical Image Segmentation using Diffusion Models
Ambiguous Medical Image Segmentation using Diffusion Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Rahman, Aimon Valanarasu, Jeya Maria Jose Hacihaliloglu, Ilker Patel, Vishal M. Johns Hopkins Univ Baltimore MD 21218 USA Univ British Columbia Vancouver BC Canada
Collective insights from a group of experts have always proven to outperform an individual's best diagnostic for clinical tasks. For the task of medical image segmentation, existing research on AI-based alternativ... 详细信息
来源: 评论
MEDIC: Remove Model Backdoors via Importance Driven Cloning
MEDIC: Remove Model Backdoors via Importance Driven Cloning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Xu, Qiuling Tao, Guanhong Honorio, Jean Liu, Yingqi An, Shengwei Shen, Guangyu Cheng, Siyuan Zhang, Xiangyu Purdue Univ W Lafayette IN 47907 USA
We develop a novel method to remove injected backdoors in deep learning models. It works by cloning the benign behaviors of a trojaned model to a new model of the same structure. It trains the clone model from scratch... 详细信息
来源: 评论
A Simple Framework for Text-Supervised Semantic Segmentation
A Simple Framework for Text-Supervised Semantic Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yi, Muyang Cui, Quan Wu, Hao Yang, Cheng Yoshie, Osamu Lu, Hongtao Shanghai Jiao Tong Univ AI Inst Dept Comp Sci & Engn MoE Key Lab Artificial Intelligence Shanghai Peoples R China Waseda Univ Tokyo Japan ByteDance Inc Beijing Peoples R China
Text-supervised semantic segmentation is a novel research topic that allows semantic segments to emerge with image-text contrasting. However, pioneering methods could be subject to specifically designed network archit... 详细信息
来源: 评论
Toward Accurate Post-Training Quantization for Image Super Resolution
Toward Accurate Post-Training Quantization for Image Super R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tu, Zhijun Hu, Jie Chen, Hanting Wang, Yunhe Huawei Noahs Ark Lab Montreal PQ Canada
Model quantization is a crucial step for deploying super resolution (SR) networks on mobile devices. However, existing works focus on quantization-aware training, which requires complete dataset and expensive computat... 详细信息
来源: 评论
Making the V in Text-VQA Matter
Making the V in Text-VQA Matter
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Hegde, Shamanthak Jahagirdar, Soumya Gangisetty, Shankar Kle Technological University Hubballi India Cvit Iiit Hyderabad Hyderabad India Iiit Hyderabad Hyderabad India
Text-based VQA aims at answering questions by reading the text present in the images. It requires a large amount of scene-text relationship understanding compared to the VQA task. Recent studies have shown that the qu... 详细信息
来源: 评论
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back Better with Semantic Task Sampling
Few-Shot Image Classification Benchmarks are Too Far From Re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bennequin, Etienne Tami, Myriam Toubhans, Antoine Hudelot, Celine Univ Paris Saclay Cent Supelec Gif Sur Yvette France Sicara Paris France
Every day, a new method is published to tackle Few-Shot Image Classification, showing better and better performances on academic benchmarks. Nevertheless, we observe that these current benchmarks do not accurately rep... 详细信息
来源: 评论
Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution
Cascaded Local Implicit Transformer for Arbitrary-Scale Supe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Hao-Wei Xu, Yu-Syuan Hong, Min-Fong Tsai, Yi-Min Kuo, Hsien-Kai Lee, Chun-Yi Natl Tsing Hua Univ Elsa Lab Hsinchu Taiwan MediaTek Inc Hsinchu Taiwan
Implicit neural representation has recently shown a promising ability in representing images with arbitrary resolutions. In this paper, we present a Local Implicit Transformer (LIT), which integrates the attention mec... 详细信息
来源: 评论
Balanced Energy Regularization Loss for Out-of-distribution Detection
Balanced Energy Regularization Loss for Out-of-distribution ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Choi, Hyunjun Jeong, Hawook Choi, Jin Young Seoul Natl Univ ASRI ECE Seoul South Korea RideFlux Inc Jeju South Korea
In the field of out-of-distribution (OOD) detection, a previous method that use auxiliary data as OOD data has shown promising performance. However, the method provides an equal loss to all auxiliary data to different... 详细信息
来源: 评论