咨询与建议

限定检索结果

文献类型

  • 23,000 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,217 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,623 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,444 篇 机械工程
    • 1,717 篇 光学工程
    • 1,076 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 86 篇 交通运输工程
    • 84 篇 土木工程
  • 3,493 篇 医学
    • 3,480 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,241 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,023 篇 英文
  • 166 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23218 条 记 录,以下是1331-1340 订阅
排序:
Systematic Architectural Design of Scale Transformed Attention Condenser DNNs via Multi-Scale Class Representational Response Similarity Analysis
Systematic Architectural Design of Scale Transformed Attenti...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Hryniowski, Andrew Wong, Alexander Vision and Image Processing Research Group University of Waterloo Canada Waterloo Artificial Intelligence Institute WaterlooON Canada DarwinAI Corp. WaterlooON Canada
Self-attention mechanisms are commonly included in a convolutional neural networks to achieve an improved efficiency performance balance. However, adding self-attention mechanisms adds additional hyperparameters to tu... 详细信息
来源: 评论
Improving Commonsense in vision-Language Models via Knowledge Graph Riddles
Improving Commonsense in Vision-Language Models via Knowledg...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ye, Shuquan Xie, Yujia Chen, Dongdong Xu, Yichong Yuan, Lu Zhu, Chenguang Liao, Jing Microsoft Redmond WA USA City Univ Hong Kong Hong Kong Peoples R China
This paper focuses on analyzing and improving the commonsense ability of recent popular vision-language (VL) models. Despite the great success, we observe that existing VL-models still lack commonsense knowledge/reaso... 详细信息
来源: 评论
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Don't Lie to Me! Robust and Efficient Explainability with Ve...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Fel, Thomas Ducoffe, Melanie Vigouroux, David Cadene, Remi Capelle, Mikael Nicodeme, Claire Serre, Thomas Brown Univ Carney Inst Brain Sci Providence RI 02912 USA Artificial & Nat Intelligence Toulouse Inst Toulouse France Sorbonne Univ CNRS Paris France IRT St Exupery Toulouse France SNCF Innovat & Res Div Paris France Thales Alenia Space Cannes France Airbus AI Res Blagnac France
A plethora of attribution methods have recently been developed to explain deep neural networks. These methods use different classes of perturbations (e.g, occlusion, blurring, masking, etc) to estimate the importance ... 详细信息
来源: 评论
Unsupervised Automatic Defect Inspection based on Image Matching and Local One-class Classification
Unsupervised Automatic Defect Inspection based on Image Matc...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Lv, Chengkan Zhang, Zhengtao Shen, Fei Zhang, Feng Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences The School of Artificial Intelligence Beijing China CASI Vision Technology Co. Ltd. Luoyang China
In this paper, an unsupervised defect inspection method based on anomaly detection is proposed to inspect various kinds of surface defects in the field of industrial production. This method consists of two modules: (i... 详细信息
来源: 评论
Distilling Self-Supervised vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation
Distilling Self-Supervised Vision Transformers for Weakly-Su...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kang, Dahyun Koniusz, Piotr Cho, Minsu Murray, Naila Meta AI Menlo Pk CA 94025 USA POSTECH Pohang South Korea CSIRO Data61 Canberra Australia Australian Natl Univ Canberra Australia
We address the task of weakly-supervised few-shot image classification and segmentation, by leveraging a vision Transformer (ViT) pretrained with self-supervision. Our proposed method takes token representations from ... 详细信息
来源: 评论
Overlooked Factors in Concept-based Explanations: Dataset Choice, Concept Learnability, and Human Capability
Overlooked Factors in Concept-based Explanations: Dataset Ch...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ramaswamy, Vikram V. Kim, Sunnie S. Y. Fong, Ruth Russakovsky, Olga Princeton Univ Princeton NJ 08544 USA
Concept-based interpretability methods aim to explain a deep neural network model's components and predictions using a pre-defined set of semantic concepts. These methods evaluate a trained model on a new, "p... 详细信息
来源: 评论
N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution
N-Gram in Swin Transformers for Efficient Lightweight Image ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Choi, Haram Lee, Jeongmin Yang, Jihoon Sogang Univ Dept Comp Sci & Engn Seoul South Korea LG Innotek Seoul South Korea
While some studies have proven that Swin Transformer (Swin) with window self-attention (WSA) is suitable for single image super-resolution (SR), the plain WSA ignores the broad regions when reconstructing high-resolut... 详细信息
来源: 评论
EfficientViT: Memory Efficient vision Transformer with Cascaded Group Attention
EfficientViT: Memory Efficient Vision Transformer with Casca...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Xinyu Peng, Houwen Zheng, Ningxin Yang, Yuqing Hu, Han Yuan, Yixuan Chinese Univ Hong Kong Hong Kong Peoples R China Microsoft Res Redmond WA USA
vision transformers have shown great success due to their high model capabilities. However, their remarkable performance is accompanied by heavy computation costs, which makes them unsuitable for real-time application... 详细信息
来源: 评论
Win-Fail Action recognition
Win-Fail Action Recognition
收藏 引用
22nd ieee/CVF Winter conference on Applications of computer vision (WACV)
作者: Parmar, Paritosh Morris, Brendan Univ British Columbia Vancouver BC Canada Univ Nevada Las Vegas NV 89154 USA
Current video/action understanding systems have demonstrated impressive performance on large recognition tasks. However, they might be limiting themselves to learning to recognize spatiotemporal patterns, rather than ... 详细信息
来源: 评论
InternImage: Exploring Large-Scale vision Foundation Models with Deformable Convolutions
InternImage: Exploring Large-Scale Vision Foundation Models ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Wenhai Dai, Jifeng Chen, Zhe Huang, Zhenhang Li, Zhiqi Zhu, Xizhou Hu, Xiaowei Lu, Tong Lu, Lewei Li, Hongsheng Wang, Xiaogang Qiao, Yu Shanghai AI Lab Shanghai Peoples R China Tsinghua Univ Beijing Peoples R China Nanjing Univ Nanjing Peoples R China SenseTime Res Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Compared to the great progress of large-scale vision transformers (ViTs) in recent years, large-scale models based on convolutional neural networks (CNNs) are still in an early state. This work presents a new large-sc... 详细信息
来源: 评论