咨询与建议

限定检索结果

文献类型

  • 23,001 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,218 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,623 篇 工学
    • 11,108 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 785 篇 信息与通信工程
    • 412 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 108 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 87 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,242 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 107 篇 化学
  • 522 篇 管理学
    • 311 篇 图书情报与档案管...
    • 224 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,516 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 53 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23219 条 记 录,以下是161-170 订阅
排序:
Contrasting intra-modal and ranking cross-modal hard negatives to enhance visio-linguistic compositional understanding
Contrasting intra-modal and ranking cross-modal hard negativ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Le Awal, Rabiul Agrawal, Aishwarya Mila Quebec AI Inst Montreal PQ Canada Univ Montreal Montreal PQ Canada Canada CIFAR AI Chair Montreal PQ Canada
vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-... 详细信息
来源: 评论
Learning Correlation Structures for vision Transformers
Learning Correlation Structures for Vision Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kim, Manjin Seo, Paul Hongsuck Schmid, Cordelia Cho, Minsu POSTECH Pohang South Korea Korea Univ Seoul South Korea Google Res Mountain View CA USA
We introduce a new attention mechanism, dubbed structural self-attention (StructSA), that leverages rich correlation patterns naturally emerging in key-query interactions of attention. StructSA generates attention map... 详细信息
来源: 评论
VLP: vision Language Planning for Autonomous Driving
VLP: Vision Language Planning for Autonomous Driving
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Pan, Chenbin Yaman, Burhaneddin Nesti, Tommaso Mallik, Abhirup Allievi, Alessandro G. Velipasalar, Senem Rene, Liu Syracuse Univ Syracuse NY USA Bosch Res North Amer & Bosch Ctr Artificial Intel Sunnyvale CA 94085 USA
Autonomous driving is a complex and challenging task that aims at safe motion planning through scene understanding and reasoning. While vision-only autonomous driving methods have recently achieved notable performance... 详细信息
来源: 评论
Making vision Transformers Truly Shift-Equivariant
Making Vision Transformers Truly Shift-Equivariant
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Rojas-Gomez, Renan A. Lim, Teck-Yian Do, Minh N. Yeh, Raymond A. UIUC Dept Elect Engn Urbana IL 61801 USA UIUC VinUni Illinois Smart Hlth Ctr Urbana IL USA Purdue Univ Dept Comp Sci W Lafayette IN 47907 USA
In the field of computer vision, vision Transformers (ViTs) have emerged as a prominent deep learning architecture. Despite being inspired by Convolutional Neural Networks (CNNs), ViTs are susceptible to small spatial... 详细信息
来源: 评论
RoDLA: Benchmarking the Robustness of Document Layout Analysis Models
RoDLA: Benchmarking the Robustness of Document Layout Analys...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Yufan Zhang, Jiaming Peng, Kunyu Zheng, Junwei Liu, Ruiping Torre, Philip Stiefelhagen, Rainer Karlsruhe Inst Technol Karlsruhe Germany Univ Oxford Oxford England
Before developing a Document Layout Analysis (DLA) model in real-world applications, conducting comprehensive robustness testing is essential. However, the robustness of DLA models remains underexplored in the literat... 详细信息
来源: 评论
Classes Are Not Equal: An Empirical Study on Image recognition Fairness
Classes Are Not Equal: An Empirical Study on Image Recogniti...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cui, Jiequan Zhu, Beier Wen, Xin Qi, Xiaojuan Yu, Bei Zhang, Hanwang Nanyang Technol Univ Singapore Singapore Univ Hong Kong Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
In this paper, we present an empirical study on image unfairness, i.e., extreme class accuracy disparity on balanced data like ImageNet. We demonstrate that are not equal and unfairness is prevalent for image classifi... 详细信息
来源: 评论
vision-and-Language Navigation via Causal Learning
Vision-and-Language Navigation via Causal Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Liuyi He, Zongtao Dang, Ronghao Shen, Mengjiao Liu, Chengju Chen, Qijun Tongji Univ Sch Elect & Informat Engn Shanghai Peoples R China
In the pursuit of robust and generalizable environment perception and language understanding, the ubiquitous challenge of dataset bias continues to plague vision-and-language navigation (VLN) agents, hindering their p... 详细信息
来源: 评论
Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching
Hybrid Functional Maps for Crease-Aware Non-Isometric Shape ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bastian, Lennart Xie, Yizheng Navab, Nassir Laehner, Zorah Tech Univ Munich Munich Germany Univ Siegen Siegen Germany Univ Bonn Bonn Germany Lamarr Inst Bonn Germany
Non-isometric shape correspondence remains a fundamental challenge in computer vision. Traditional methods using Laplace-Beltrami operator (LBO) eigenmodes face limitations in characterizing high-frequency extrinsic s... 详细信息
来源: 评论
De-Diffusion Makes Text a Strong Cross-Modal Interface
De-Diffusion Makes Text a Strong Cross-Modal Interface
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wei, Chen Liu, Chenxi Qi, Siyuan Zhang, Zhishuai Yuille, Alan Yu, Jiahui Google DeepMind London England Johns Hopkins Univ Baltimore MD 21218 USA
We demonstrate text as a strong cross-modal interface. Rather than relying on deep embeddings to connect image and language as the interface representation, our approach represents an image as text, from which we enjo... 详细信息
来源: 评论
PEEKABOO: Interactive Video Generation via Masked-Diffusion
PEEKABOO: Interactive Video Generation via Masked-Diffusion
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jain, Yash Nasery, Anshul Vineet, Vibhav Behl, Harkirat Microsoft Redmond WA 98052 USA Univ Washington Seattle WA USA
Modern video generation models like Sora have achieved remarkable success in producing high-quality videos. However, a significant limitation is their inability to offer interactive control to users, a feature that pr... 详细信息
来源: 评论