咨询与建议

限定检索结果

文献类型

  • 23,001 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,218 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,623 篇 工学
    • 11,108 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 785 篇 信息与通信工程
    • 412 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 108 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 87 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,242 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 107 篇 化学
  • 522 篇 管理学
    • 311 篇 图书情报与档案管...
    • 224 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,516 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 53 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23219 条 记 录,以下是381-390 订阅
排序:
RoMa: Robust Dense Feature Matching
RoMa: Robust Dense Feature Matching
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Edstedt, Johan Sun, Qiyu Bokman, Georg Wadenback, Marten Felsberg, Michael Linkoping Univ Linkoping Sweden East China Univ Sci & Technol Shanghai Peoples R China Chalmers Univ Technol Gothenburg Sweden
Feature matching is an important computer vision task that involves estimating correspondences between two images of a 3D scene, and dense methods estimate all such correspondences. The aim is to learn a robust model,... 详细信息
来源: 评论
SaCo Loss: Sample-wise Affinity Consistency for vision-Language Pre-training
SaCo Loss: Sample-wise Affinity Consistency for Vision-Langu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wu, Sitong Tan, Haoru Tian, Zhuotao Chen, Yukang Qi, Xiaojuan Jia, Jiaya CUHK Hong Kong Peoples R China HKU Hong Kong Peoples R China SmartMore Hong Kong Peoples R China
vision-language pre-training (VLP) aims to learn joint representations of vision and language modalities. The contrastive paradigm is currently dominant in this field. However, we observe a notable misalignment phenom... 详细信息
来源: 评论
Can domain adaptation make object recognition work for everyone?
Can domain adaptation make object recognition work for every...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Prabhu, Viraj Selvaraju, Ramprasaath R. Hoffman, Judy Naik, Nikhil Georgia Tech Atlanta GA 30332 USA Artera AI Berkeley CA USA Salesforce Res Washington DC USA
Despite the rapid progress in deep visual recognition, modern computer vision datasets significantly overrepresent the developed world and models trained on such datasets underperform on images from unseen geographies... 详细信息
来源: 评论
Lift3D: Zero-Shot Lifting of Any 2D vision Model to 3D
Lift3D: Zero-Shot Lifting of Any 2D Vision Model to 3D
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Varma, Mukund T. Wang, Peihao Fan, Zhiwen Wang, Zhangyang Su, Hao Ramamoorthi, Ravi Univ Calif San Diego La Jolla CA 92093 USA Univ Texas Austin Austin TX USA
In recent years, there has been an explosion of 2D vision models for numerous tasks such as semantic segmentation, style transfer or scene editing, enabled by large-scale 2D image datasets. At the same time, there has... 详细信息
来源: 评论
Compositional Mixture Representations for vision and Text
Compositional Mixture Representations for Vision and Text
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Alaniz, Stephan Federici, Marco Akata, Zeynep Univ Tubingen Tubingen Germany Max Planck Inst Informat Saarbrucken Germany Univ Amsterdam Amsterdam Netherlands
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture re... 详细信息
来源: 评论
Towards Detailed Characteristic-Preserving Virtual Try-On
Towards Detailed Characteristic-Preserving Virtual Try-On
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lee, Sangho Lee, Seoyoung Lee, Joonseok Seoul Natl Univ Seoul South Korea
While virtual try-on has rapidly progressed recently, existing virtual try-on methods still struggle to faithfully represent various details of the clothes when worn. In this paper, we propose a simple yet effective m... 详细信息
来源: 评论
Proposal-free Lidar Panoptic Segmentation with Pillar-level Affinity
Proposal-free Lidar Panoptic Segmentation with Pillar-level ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Qi Vora, Sourabh Johns Hopkins Univ Baltimore MD 21218 USA Motional Boston MA USA
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla... 详细信息
来源: 评论
Anomaly Detection in Autonomous Driving: A Survey
Anomaly Detection in Autonomous Driving: A Survey
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bogdoll, Daniel Nitsche, Maximilian Zoellner, J. Marius FZI Res Ctr Informat Technol Karlsruhe Germany KIT Karlsruhe Inst Technol Karlsruhe Germany
Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the ... 详细信息
来源: 评论
OVER-NAV: Elevating Iterative vision-and-Language Navigation with Open-Vocabulary Detection and StructurEd Representation
OVER-NAV: Elevating Iterative Vision-and-Language Navigation...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Ganlong Li, Guanbin Chen, Weikai Yu, Yizhou Univ Hong Kong Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Guangdong Peoples R China GuangDong Prov Key Lab Informat Secur Technol Guangzhou Guangdong Peoples R China Tencent Games Digital Content Technol Ctr Shenzhen Guangdong Peoples R China
Recent advances in Iterative vision-and-Language Navigation (IVLN) introduce a more meaningful and practical paradigm of VLN by maintaining the agent's memory across tours of scenes. Although the long-term memory ... 详细信息
来源: 评论
OutfitGAN: Learning Compatible Items for Generative Fashion Outfits
OutfitGAN: Learning Compatible Items for Generative Fashion ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Moosaei, Maryam Lin, Yusan Akhazhanov, Ablaikhan Chen, Huiyuan Wang, Fei Yang, Hao Visa Res San Francisco CA 94158 USA Univ Calif Los Angeles Los Angeles CA 90024 USA Nazarbayev Univ Astana Kazakhstan
Fashion-on-demand is becoming an important concept for fashion industries. Many attempts have been made to leverage machine learning methods to generate fashion designs tailored to customers' tastes. However, how ... 详细信息
来源: 评论