咨询与建议

限定检索结果

文献类型

  • 22,999 篇 会议
  • 126 册 图书
  • 93 篇 期刊文献

馆藏范围

  • 23,217 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,478 篇 软件工程
    • 2,445 篇 机械工程
    • 1,715 篇 光学工程
    • 1,076 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 85 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,240 篇 理学
    • 1,939 篇 物理学
    • 1,639 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,151 篇 英文
  • 38 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23218 条 记 录,以下是4711-4720 订阅
排序:
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Deep Occlusion-Aware Instance Segmentation with Overlapping ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ke, Lei Tai, Yu-Wing Tang, Chi-Keung Hong Kong Univ Sci & Technol Hong Kong Peoples R China Kuaishou Technol Beijing Peoples R China
Segmenting highly-overlapping objects is challenging, because typically no distinction is made between real object contours and occlusion boundaries. Unlike previous two-stage instance segmentation methods, we model i... 详细信息
来源: 评论
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On
Disentangled Cycle Consistency for Highly-realistic Virtual ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ge, Chongjian Song, Yibing Ge, Yuying Yang, Han Liu, Wei Luo, Ping Univ Hong Kong Hong Kong Peoples R China Tencent AI Lab Bellevue WA 98004 USA Swiss Fed Inst Technol Zurich Switzerland Tencent Data Platform Bellevue WA USA
Image virtual try-on replaces the clothes on a person image with a desired in-shop clothes image. It is challenging because the person and the in-shop clothes are unpaired. Existing methods formulate virtual try-on as... 详细信息
来源: 评论
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
MOS: Towards Scaling Out-of-distribution Detection for Large...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Huang, Rui Li, Yixuan Univ Wisconsin Madison Dept Comp Sci Madison WI 53706 USA
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Existing solutions are mainly driven by small datasets, with low resolution and very fe... 详细信息
来源: 评论
Animating General Image with Large Visual Motion Model
Animating General Image with Large Visual Motion Model
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Dengsheng Chen Xiaoming Wei Xiaolin Wei Meituan Beijing China
We present the pioneering Large Visual Motion Model (LVMM), meticulously engineered to analyze the intrinsic dynamics encapsulated within real-world imagery. Our model, fortified with a wealth of prior knowledge extra... 详细信息
来源: 评论
SceneGen: Learning to Generate Realistic Traffic Scenes
SceneGen: Learning to Generate Realistic Traffic Scenes
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tan, Shuhan Wong, Kelvin Wang, Shenlong Manivasagam, Sivabalan Ren, Mengye Urtasun, Raquel Uber Adv Technol Grp Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Univ Toronto Toronto ON Canada
We consider the problem of generating realistic traffic scenes automatically. Existing methods typically insert actors into the scene according to a set of hand-crafted heuristics and are limited in their ability to m... 详细信息
来源: 评论
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
TransFill: Reference-guided Image Inpainting by Merging Mult...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhou, Yuqian Barnes, Connelly Shechtman, Eli Amirghodsi, Sohrab UIUC IFP Champaign IL 61820 USA Adobe Res San Jose CA USA
Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage la... 详细信息
来源: 评论
Panoramic Image Reflection Removal
Panoramic Image Reflection Removal
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hong, Yuchen Zheng, Qian Zhao, Lingran Jiang, Xudong Kot, Alex C. Shi, Boxin Peking Univ Dept Comp Sci & Technol NELVT Beijing Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore Peking Univ Inst Artificial Intelligence Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
This paper studies the problem of panoramic image reflection removal, aiming at reliving the content ambiguity between reflection and transmission scenes. Although a partial view of the reflection scene is included in... 详细信息
来源: 评论
SetVAE: Learning Hierarchical Composition for Generative Modeling of Set-Structured Data
SetVAE: Learning Hierarchical Composition for Generative Mod...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kim, Jinwoo Yoo, Jaehoon Lee, Juho Hong, Seunghoon Korea Adv Inst Sci & Technol Daejeon South Korea
Generative modeling of set-structured data, such as point clouds, requires reasoning over local and global structures at various scales. However, adopting multi-scale frameworks for ordinary sequential data to a set-s... 详细信息
来源: 评论
Brain Controlled Communication system using Machine Learning techniques of computer vision  5
Brain Controlled Communication system using Machine Learning...
收藏 引用
5th ieee International conference on Advances in Computing, Communication Control and Networking, ICAC3N 2023
作者: Sabharwal, Munish Sultania, Shantam Jindal, Harsh Galgotias University Greater Noida India Wissen Technology Banglore India Chandigarh University Dept. Of Computer Science And Engineering Mohali India
Nowadays computers have become a necessity for all computers have made a great leap for us and with the help of that we are able to move to a golden age of Artificial Intelligence. Artificial Intelligence or A.I has h... 详细信息
来源: 评论
Learning to Segment Rigid Motions from Two Frames
Learning to Segment Rigid Motions from Two Frames
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Gengshan Ramanan, Deva Carnegie Mellon Univ Pittsburgh PA 15213 USA Argo AI Pittsburgh PA USA
Appearance-based detectors achieve remarkable performance on common scenes, benefiting from high-capacity models and massive annotated data, but tend to fail for scenarios that lack training data. Geometric motion seg... 详细信息
来源: 评论