咨询与建议

限定检索结果

文献类型

  • 23,001 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,218 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,623 篇 工学
    • 11,108 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 785 篇 信息与通信工程
    • 412 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 108 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 87 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,242 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 107 篇 化学
  • 522 篇 管理学
    • 311 篇 图书情报与档案管...
    • 224 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,516 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 53 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23219 条 记 录,以下是4721-4730 订阅
Source-Free Domain Adaptation for Semantic Segmentation
Source-Free Domain Adaptation for Semantic Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yuang Zhang, Wei Wang, Jun East China Normal Univ Shanghai Peoples R China
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network (CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive... 详细信息
来源: 评论
Forensic Iris Image Synthesis
Forensic Iris Image Synthesis
收藏 引用
ieee Winter Applications and computer vision workshops (WACVW)
作者: Rasel Ahmed Bhuiyan Adam Czajka Department of Computer Science and Engineering 384 Fitzpatrick Hall of Engineering University of Notre Dame Notre Dame Indiana USA
Post-mortem iris recognition is an emerging application of iris-based human identification in a forensic setup, able to correctly identify deceased subjects even three weeks post-mortem. This technique thus is conside...
来源: 评论
Learning Position and Target Consistency for Memory-based Video Object Segmentation
Learning Position and Target Consistency for Memory-based Vi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hu, Li Zhang, Peng Zhang, Bang Pan, Pan Xu, Yinghui Jin, Rong Alibaba Grp Machine Intelligence Technol Lab Hangzhou Peoples R China
This paper studies the problem of semi-supervised video object segmentation(VOS). Multiple works have shown that memory-based approaches can be effective for video object segmentation. They are mostly based on pixel-l... 详细信息
来源: 评论
A Dual-stream Framework for 3D Mask Face Presentation Attack Detection  18
A Dual-stream Framework for 3D Mask Face Presentation Attack...
收藏 引用
18th ieee/CVF International conference on computer vision (ICCV)
作者: Chen, Shen Yao, Taiping Zhang, Keyue Chen, Yang Sun, Ke Ding, Shouhong Li, Jilin Huang, Feiyue Ji, Rongrong Tencent YouTu Lab Shenzhen Peoples R China Xiamen Univ Media Analyt & Comp Lab Xiamen Peoples R China
Face presentation attack detection (PAD) plays a vital role in face recognition systems. Many previous face anti-spoofing methods mainly focus on the 2D face representation attacks, which however, suffer from great pe... 详细信息
来源: 评论
Animating Pictures with Eulerian Motion Fields
Animating Pictures with Eulerian Motion Fields
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Holynski, Aleksander Curless, Brian Seitz, Steven M. Szeliski, Richard Univ Washington Seattle WA 98195 USA
In this paper, we demonstrate a fully automatic method for converting a still image into a realistic animated looping video. We target scenes with continuous fluid motion, such as flowing water and billowing smoke. Ou... 详细信息
来源: 评论
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks
PU-GCN: Point Cloud Upsampling using Graph Convolutional Net...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Qian, Guocheng Abualshour, Abdulellah Li, Guohao Thabet, Ali Ghanem, Bernard King Abdullah Univ Sci & Technol KAUST Abu Dhabi U Arab Emirates
The effectiveness of learning-based point cloud upsampling pipelines heavily relies on the upsampling modules and feature extractors used therein. For the point upsampling module, we propose a novel model called NodeS... 详细信息
来源: 评论
Video Object Segmentation Using Global and Instance Embedding Learning
Video Object Segmentation Using Global and Instance Embeddin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ge, Wenbin Lu, Xiankai Shen, Jianbing Beijing Inst Technol Beijing Peoples R China Shandong Univ Sch Software Jinan Peoples R China Incept Inst Artificial Intelligence Beijing Peoples R China
In this paper, we propose a feature embedding based video object segmentation (VOS) method which is simple, fast and effective. The current VOS task involves two main challenges: object instance differentiation and cr... 详细信息
来源: 评论
Achieving robustness in classification using optimal transport with hinge regularization
Achieving robustness in classification using optimal transpo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Serrurier, Mathieu Mamalet, Franck Gonzalez-Sanz, Alberto Boissin, Thibaut Loubes, Jean-Michel del Barrio, Eustasio Univ Paul Sabatier Toulouse France IRT St Exupery Toulouse France Univ Valladolid Valladolid Spain
Adversarial examples have pointed out Deep Neural Network's vulnerability to small local noise. It has been shown that constraining their Lipschitz constant should enhance robustness, but make them harder to learn... 详细信息
来源: 评论
CompositeTasking: Understanding Images by Spatial Composition of Tasks
CompositeTasking: Understanding Images by Spatial Compositio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Popovic, Nikola Paudel, Danda Pani Probst, Thomas Sun, Guolei Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Katholieke Univ Leuven ESAT PSI VISICS Leuven Belgium
We define the concept of CompositeTasking as the fusion of multiple, spatially distributed tasks, for various aspects of image understanding. Learning to perform spatially distributed tasks is motivated by the frequen... 详细信息
来源: 评论
No frame left behind: Full Video Action recognition
No frame left behind: Full Video Action Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Xin Pintea, Silvia L. Nejadasl, Fatemeh Karimi Booij, Olaf van Gemert, Jan C. Delft Univ Technol Comp Vis Lab Delft Netherlands TomTom Amsterdam Netherlands
Not all video frames are equally informative for recognizing an action. It is computationally infeasible to train deep networks on all video frames when actions develop over hundreds of frames. A common heuristic is u... 详细信息
来源: 评论