咨询与建议

限定检索结果

文献类型

  • 22,999 篇 会议
  • 107 册 图书
  • 93 篇 期刊文献

馆藏范围

  • 23,198 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,478 篇 软件工程
    • 2,445 篇 机械工程
    • 1,715 篇 光学工程
    • 1,076 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 85 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,240 篇 理学
    • 1,939 篇 物理学
    • 1,639 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 62 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,132 篇 英文
  • 38 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23199 条 记 录,以下是4731-4740 订阅
排序:
A Dual-stream Framework for 3D Mask Face Presentation Attack Detection  18
A Dual-stream Framework for 3D Mask Face Presentation Attack...
收藏 引用
18th ieee/CVF International conference on computer vision (ICCV)
作者: Chen, Shen Yao, Taiping Zhang, Keyue Chen, Yang Sun, Ke Ding, Shouhong Li, Jilin Huang, Feiyue Ji, Rongrong Tencent YouTu Lab Shenzhen Peoples R China Xiamen Univ Media Analyt & Comp Lab Xiamen Peoples R China
Face presentation attack detection (PAD) plays a vital role in face recognition systems. Many previous face anti-spoofing methods mainly focus on the 2D face representation attacks, which however, suffer from great pe... 详细信息
来源: 评论
CompositeTasking: Understanding Images by Spatial Composition of Tasks
CompositeTasking: Understanding Images by Spatial Compositio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Popovic, Nikola Paudel, Danda Pani Probst, Thomas Sun, Guolei Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Katholieke Univ Leuven ESAT PSI VISICS Leuven Belgium
We define the concept of CompositeTasking as the fusion of multiple, spatially distributed tasks, for various aspects of image understanding. Learning to perform spatially distributed tasks is motivated by the frequen... 详细信息
来源: 评论
Achieving robustness in classification using optimal transport with hinge regularization
Achieving robustness in classification using optimal transpo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Serrurier, Mathieu Mamalet, Franck Gonzalez-Sanz, Alberto Boissin, Thibaut Loubes, Jean-Michel del Barrio, Eustasio Univ Paul Sabatier Toulouse France IRT St Exupery Toulouse France Univ Valladolid Valladolid Spain
Adversarial examples have pointed out Deep Neural Network's vulnerability to small local noise. It has been shown that constraining their Lipschitz constant should enhance robustness, but make them harder to learn... 详细信息
来源: 评论
No frame left behind: Full Video Action recognition
No frame left behind: Full Video Action Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Xin Pintea, Silvia L. Nejadasl, Fatemeh Karimi Booij, Olaf van Gemert, Jan C. Delft Univ Technol Comp Vis Lab Delft Netherlands TomTom Amsterdam Netherlands
Not all video frames are equally informative for recognizing an action. It is computationally infeasible to train deep networks on all video frames when actions develop over hundreds of frames. A common heuristic is u... 详细信息
来源: 评论
Self-Supervised Simultaneous Multi-Step Prediction of Road Dynamics and Cost Map
Self-Supervised Simultaneous Multi-Step Prediction of Road D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Amirloo, Elmira Rohani, Mohsen Banijamali, Ershad Luo, Jun Poupart, Pascal Huawei Noahs Ark Lab Toronto ON Canada Univ Waterloo Sch Comp Sci Waterloo ON Canada
While supervised learning is widely used for perception modules in conventional autonomous driving solutions, scalability is hindered by the huge amount of data labeling needed. In contrast, while end-to-end architect... 详细信息
来源: 评论
SLADE: A Self-Training Framework For Distance Metric Learning
SLADE: A Self-Training Framework For Distance Metric Learnin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Duan, Jiali Lin, Yen-Liang Son Tran Davis, Larry S. Kuo, C-C Jay Univ Southern Calif Los Angeles CA 90089 USA Amazon Seattle WA USA
Most existing distance metric learning approaches use fully labeled data to learn the sample similarities in an embedding space. We present a self-training framework, SLADE, to improve retrieval performance by leverag... 详细信息
来源: 评论
Reconsidering Representation Alignment for Multi-view Clustering
Reconsidering Representation Alignment for Multi-view Cluste...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Trosten, Daniel J. Lokse, Sigurd Jenssen, Robert Kampffmeyer, Michael UiT Arctic Univ Norway Dept Phys & Technol Tromso Norway UiT Machine Learning Grp Tromso Norway
Aligning distributions of view representations is a core component of today's state of the art models for deep multi-view clustering. However, we identify several drawbacks with naively aligning representation dis... 详细信息
来源: 评论
Generalization on Unseen Domains via Inference-time Label-Preserving Target Projections
Generalization on Unseen Domains via Inference-time Label-Pr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Pandey, Prashant Raman, Mrigank Varambally, Sumanth Prathosh, A. P. IIT Delhi Delhi India
Generalization of machine learning models trained on a set of source domains on unseen target domains with different statistics, is a challenging problem. While many approaches have been proposed to solve this problem... 详细信息
来源: 评论
Generative Hierarchical Features from Synthesizing Images
Generative Hierarchical Features from Synthesizing Images
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Xu, Yinghao Shen, Yujun Zhu, Jiapeng Yang, Ceyuan Zhou, Bolei Chinese Univ Hong Kong Hong Kong Peoples R China
Generative Adversarial Networks (GANs) have recently advanced image synthesis by learning the underlying distribution of the observed data. However, how the features learned from solving the task of image generation a... 详细信息
来源: 评论
AdaBins: Depth Estimation Using Adaptive Bins
AdaBins: Depth Estimation Using Adaptive Bins
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bhat, Shariq Farooq Alhashim, Ibraheem Wonka, Peter KAUST Thuwal Saudi Arabia
We address the problem of estimating a high quality dense depth map from a single RGB input image. We start out with a baseline encoder-decoder convolutional neural network architecture and pose the question of how th... 详细信息
来源: 评论