咨询与建议

限定检索结果

文献类型

  • 22,999 篇 会议
  • 107 册 图书
  • 93 篇 期刊文献

馆藏范围

  • 23,198 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,478 篇 软件工程
    • 2,445 篇 机械工程
    • 1,715 篇 光学工程
    • 1,076 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 85 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,240 篇 理学
    • 1,939 篇 物理学
    • 1,639 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 62 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,132 篇 英文
  • 38 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23199 条 记 录,以下是4761-4770 订阅
排序:
Incremental Few-Shot Instance Segmentation
Incremental Few-Shot Instance Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ganea, Dan Andrei Boom, Bas Poppe, Ronald Univ Utrecht Utrecht Netherlands Cyclomedia Technol Zaltbommel Netherlands
Few-shot instance segmentation methods are promising when labeled training data for novel classes is scarce. However, current approaches do not facilitate flexible addition of novel classes. They also require that exa... 详细信息
来源: 评论
4D Hyperspectral Photoacoustic Data Restoration with Reliability Analysis
4D Hyperspectral Photoacoustic Data Restoration with Reliabi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liao, Weihang Subpa-Asa, Art Zheng, Yinqiang Sato, Imari Tokyo Inst Technol Tokyo Japan Natl Inst Informat Tokyo Japan Univ Tokyo Tokyo Japan
Hyperspectral photoacoustic (HSPA) spectroscopy is an emerging bi-modal imaging technology that is able to show the wavelength-dependent absorption distribution of the interior of a 3D volume. However, HSPA devices ha... 详细信息
来源: 评论
The Blessings of Unlabeled Background in Untrimmed Videos
The Blessings of Unlabeled Background in Untrimmed Videos
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yuan Chen, Jingyuan Chen, Zhenfang Deng, Bing Huang, Jianqiang Zhang, Hanwang Alibaba Grp Hangzhou Peoples R China Univ Hong Kong Hong Kong Peoples R China Nanyang Technol Univ Singapore Singapore
Weakly-supervised Temporal Action Localization (WTAL) aims to detect the action segments with only video-level action labels in training. The key challenge is how to distinguish the action of interest segments from th... 详细信息
来源: 评论
DAP: Detection-Aware Pre-training with Weak Supervision
DAP: Detection-Aware Pre-training with Weak Supervision
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhong, Yuanyi Wang, Jianfeng Wang, Lijuan Peng, Jian Wang, Yu-Xiong Zhang, Lei Univ Illinois Urbana IL 61801 USA Microsoft Redmond WA USA
This paper presents a detection-aware pre-training (DAP) approach, which leverages only weakly-labeled classification-style datasets (e.g., ImageNet) for pre-training, but is specifically tailored to benefit object de... 详细信息
来源: 评论
Learning Deep Latent Variable Models by Short-Run MCMC Inference with Optimal Transport Correction
Learning Deep Latent Variable Models by Short-Run MCMC Infer...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: An, Dongsheng Xie, Jianwen Li, Ping Baidu Res Cognit Comp Lab 10900 NE 8th St Bellevue WA 98004 USA
Learning latent variable models with deep top-down architectures typically requires inferring the latent variables for each training example based on the posterior distribution of these latent variables. The inference... 详细信息
来源: 评论
A Hybrid ANN-SNN Architecture for Low-Power and Low-Latency Visual Perception
A Hybrid ANN-SNN Architecture for Low-Power and Low-Latency ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Asude Aydin Mathias Gehrig Daniel Gehrig Davide Scaramuzza Robotics and Perception Group University of Zurich Switzerland
Spiking Neural Networks (SNNs) are a class of bio-inspired neural networks that promise to bring low-power and low-latency inference to edge-devices through the use of asynchronous and sparse processing. However, bein... 详细信息
来源: 评论
Learning Graphs for Knowledge Transfer with Limited Labels
Learning Graphs for Knowledge Transfer with Limited Labels
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ghosh, Pallabi Saini, Nirat Davis, Larry S. Shrivastava, Abhinav Univ Maryland College Pk MD 20742 USA
Fixed input graphs are a mainstay in approaches that utilize Graph Convolution Networks (GCNs) for knowledge transfer. The standard paradigm is to utilize relationships in the input graph to transfer information using... 详细信息
来源: 评论
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
Semi-Supervised Semantic Segmentation with Cross Pseudo Supe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Xiaokang Yuan, Yuhui Zeng, Gang Wang, Jingdong Peking Univ Key Lab Machine Percept MOE Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China Microsoft Res Beijing Peoples R China
In this paper, we study the semi-supervised semantic segmentation problem via exploring both labeled data and extra unlabeled data. We propose a novel consistency regularization approach, called cross pseudo supervisi... 详细信息
来源: 评论
DER: Dynamically Expandable Representation for Class Incremental Learning
DER: Dynamically Expandable Representation for Class Increme...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yan, Shipeng Xie, Jiangwei He, Xuming ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
We address the problem of class incremental learning, which is a core step towards achieving adaptive vision intelligence. In particular, we consider the task setting of incremental learning with limited memory and ai... 详细信息
来源: 评论
SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning
SelfAugment: Automatic Augmentation Policies for Self-Superv...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Reed, Colorado J. Metzger, Sean Srinivas, Aravind Darrell, Trevor Keutzer, Kurt Univ Calif Berkeley BAIR Dept Comp Sci Berkeley CA 94720 USA Weill Neurosci Inst Grad Grp Bioengn Berkeley UCSF San Francisco CA USA UCSF Neurol Surg San Francisco CA USA
A common practice in unsupervised representation learning is to use labeled data to evaluate the quality of the learned representations. This supervised evaluation is then used to guide critical aspects of the trainin... 详细信息
来源: 评论