咨询与建议

限定检索结果

文献类型

  • 23,008 篇 会议
  • 126 册 图书
  • 94 篇 期刊文献

馆藏范围

  • 23,227 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,631 篇 工学
    • 11,116 篇 计算机科学与技术...
    • 3,481 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,080 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 788 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 109 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 88 篇 交通运输工程
    • 84 篇 土木工程
  • 3,495 篇 医学
    • 3,482 篇 临床医学
    • 82 篇 基础医学(可授医学...
  • 3,246 篇 理学
    • 1,941 篇 物理学
    • 1,643 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,186 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,206 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 105 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 79 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 60 篇 peking univ peop...
  • 60 篇 tsinghua univ pe...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 65 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 35 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 29 篇 ling haibin
  • 29 篇 darrell trevor
  • 29 篇 pascal fua
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan

语言

  • 22,989 篇 英文
  • 210 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23228 条 记 录,以下是4791-4800 订阅
排序:
Consensus Maximisation Using Influences of Monotone Boolean Functions
Consensus Maximisation Using Influences of Monotone Boolean ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tennakoon, Ruwan Suter, David Zhang, Erchuan Chin, Tat-Jun Bab-Hadiashar, Alireza RMIT Univ Melbourne Vic Australia Edith Cowen Univ Perth WA Australia Univ Adelaide Adelaide SA Australia
Consensus maximisation (MaxCon), which is widely used for robust fitting in computer vision, aims to find the largest subset of data that fits the model within some tolerance level. In this paper, we outline the conne... 详细信息
来源: 评论
Point2Skeleton: Learning Skeletal Representations from Point Clouds
Point2Skeleton: Learning Skeletal Representations from Point...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lin, Cheng Li, Changjian Liu, Yuan Chen, Nenglun Choi, Yi-King Wang, Wenping Univ Hong Kong Hong Kong Peoples R China UCL London England Texas A&M Univ College Stn TX 77843 USA
We introduce Point2Skeleton, an unsupervised method to learn skeletal representations from point clouds. Existing skeletonization methods are limited to tubular shapes and the stringent requirement of watertight input... 详细信息
来源: 评论
Shape and Material Capture at Home
Shape and Material Capture at Home
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lichy, Daniel Wu, Jiaye Sengupta, Soumyadip Jacobs, David W. Univ Maryland College Pk MD 20742 USA Univ Washington Seattle WA 98195 USA
In this paper, we present a technique for estimating the geometry and reflectance of objects using only a camera, flashlight, and optionally a tripod. We propose a simple data capture technique in which the user goes ... 详细信息
来源: 评论
Deep Gradient Projection Networks for Pan-sharpening
Deep Gradient Projection Networks for Pan-sharpening
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Xu, Shuang Zhang, Jiangshe Zhao, Zixiang Sun, Kai Liu, Junmin Zhang, Chunxia Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China
Pan-sharpening is an important technique for remote sensing imaging systems to obtain high resolution multispectral images. Recently, deep learning has become the most popular tool for pan-sharpening. This paper devel... 详细信息
来源: 评论
Harmonious Semantic Line Detection via Maximal Weight Clique Selection
Harmonious Semantic Line Detection via Maximal Weight Clique...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jin, Dongkwon Park, Wonhui Jeong, Seong-Gyun Kim, Chang-Su Korea Univ Seoul South Korea 42Dot Ai Seoul South Korea
A novel algorithm to detect an optimal set of semantic lines is proposed in this work. We develop two networks: selection network (S-Net) and harmonization network (H-Net). First, S-Net computes the probabilities and ... 详细信息
来源: 评论
Multimodal Motion Prediction with Stacked Transformers
Multimodal Motion Prediction with Stacked Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yicheng Zhang, Jinghuai Fang, Liangji Jiang, Qinhong Zhou, Bolei Chinese Univ Hong Kong Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China
Predicting multiple plausible future trajectories of the nearby vehicles is crucial for the safety of autonomous driving. Recent motion prediction approaches attempt to achieve such multimodal motion prediction by imp... 详细信息
来源: 评论
Regularizing Generative Adversarial Networks under Limited Data
Regularizing Generative Adversarial Networks under Limited D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tseng, Hung-Yu Jiang, Lu Liu, Ce Yang, Ming-Hsuan Yang, Weilong Google Res Mountain View CA USA Univ Calif Merced Merced CA 95343 USA Waymo Mountain View CA USA Yonsei Univ Seoul South Korea
Recent years have witnessed the rapid progress of generative adversarial networks (GANs). However, the success of the GAN models hinges on a large amount of training data. This work proposes a regularization approach ... 详细信息
来源: 评论
Isometric Multi-Shape Matching
Isometric Multi-Shape Matching
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Gao, Maolin Laehner, Zorah Thunberg, Johan Cremers, Daniel Bernard, Florian Tech Univ Munich Munich Germany Halmstad Univ Halmstad Sweden Univ Siegen Siegen Germany
Finding correspondences between shapes is a fundamental problem in computer vision and graphics, which is relevant for many applications, including 3D reconstruction, object tracking, and style transfer. The vast majo... 详细信息
来源: 评论
Self-Supervised Wasserstein Pseudo-Labeling for Semi-Supervised Image Classification
Self-Supervised Wasserstein Pseudo-Labeling for Semi-Supervi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Taherkhani, Fariborz Dabouei, Ali Soleymani, Sobhan Dawson, Jeremy Nasrabadi, Nasser M. West Virginia Univ Morgantown WV 26506 USA
The goal is to use Wasserstein metric to provide pseudo labels for the unlabeled images to train a Convolutional Neural Networks (CNN) in a Semi-Supervised Learning (SSL) manner for the classification task. The basic ... 详细信息
来源: 评论
Shelf-Supervised Mesh Prediction in the Wild
Shelf-Supervised Mesh Prediction in the Wild
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ye, Yufei Tulsiani, Shubham Gupta, Abhinav Carnegie Mellon Univ Pittsburgh PA 15213 USA Facebook AI Res Pittsburgh PA USA
We aim to infer 3D shape and pose of object from a single image and propose a learning-based approach that can train from unstructured image collections, supervised by only segmentation outputs from off-the-shelf reco... 详细信息
来源: 评论