咨询与建议

限定检索结果

文献类型

  • 22,999 篇 会议
  • 107 册 图书
  • 93 篇 期刊文献

馆藏范围

  • 23,198 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,478 篇 软件工程
    • 2,445 篇 机械工程
    • 1,715 篇 光学工程
    • 1,076 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 85 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,240 篇 理学
    • 1,939 篇 物理学
    • 1,639 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 62 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,132 篇 英文
  • 38 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23199 条 记 录,以下是4801-4810 订阅
排序:
Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning
Revamping Cross-Modal Recipe Retrieval with Hierarchical Tra...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Salvador, Amaia Gundogdu, Erhan Bazzani, Loris Donoser, Michael Amazon Seattle WA 98109 USA
Cross-modal recipe retrieval has recently gained substantial attention due to the importance of food in people's lives, as well as the availability of vast amounts of digital cooking recipes and food images to tra... 详细信息
来源: 评论
Unsupervised Disentanglement of Linear-Encoded Facial Semantics
Unsupervised Disentanglement of Linear-Encoded Facial Semant...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zheng, Yutong Huang, Yu-Kai Tao, Ran Shen, Zhiqiang Savvides, Marios Carnegie Mellon Univ Pittsburgh PA 15213 USA
We propose a method to disentangle linear-encoded facial semantics from StyleGAN without external supervision. The method derives from linear regression and sparse representation learning concepts to make the disentan... 详细信息
来源: 评论
Holistic 3D Human and Scene Mesh Estimation from Single View Images
Holistic 3D Human and Scene Mesh Estimation from Single View...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Weng, Zhenzhen Yeung, Serena Stanford Univ Stanford CA 94305 USA
The 3D world limits the human body pose and the human body pose conveys information about the surrounding objects. Indeed, from a single image of a person placed in an indoor scene, we as humans are adept at resolving... 详细信息
来源: 评论
Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report
Efficient Deep Models for Real-Time 4K Image Super-Resolutio...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Conde, Marcos V. Zamfir, Eduard Timofte, Radu Motilla, Daniel Liu, Cen Zhang, Zexin Peng, Yunbo Lin, Yue Guo, Jiaming Zou, Xueyi Chen, Yuyi Liu, Yi Hao, Jia Yan, Youliang Zhang, Yuanfan Li, Gen Sun, Lei Kong, Lingshun Bai, Haoran Pan, Jinshan Dong, Jiangxin Tang, Jinhui Ayazoglu, Mustafa Bilecen, Bahri Batuhan Li, Mingxi Zhang, Yuhang Fan, Xianjun Sheng, Yankai Sun, Long Liu, Zibin Gou, Weiran Li, Shaoqing Yi, Ziyao Xiang, Yan Kong, Dehui Xu, Ke Gankhuyag, Ganzorig Yoon, Kihwan Zhang, Jin Yu, Gaocheng Zhang, Feng Wang, Hongbin Zhou, Zhou Chao, Jiahao Gao, Hongfan Gong, Jiali Yang, Zhengfeng Zeng, Zhenbing Chen, Chengpeng Guo, Zichao Park, Anjin Liu, Yuqing Jia, Qi Yu, Hongyuan Yin, Xuanwu Zuo, Kunlong Zhang, Dongyang Fu, Ting Cheng, Zhengxue Zhu, Shiai Zhou, Dajiang Yu, Weichen Ge, Lin Dong, Jiahua Zou, Yajun Wu, Zhuoyuan Han, Binnan Zhang, Xiaolin Zhang, Heng Shao, Ben Zheng, Shaolong Yin, Daheng Chen, Baijun Liu, Mengyang Nistor, Marian-Sergiu Chen, Yi-Chung Huang, Zhi-Kai Chiang, Yuan-Chun Chen, Wei-Ting Yang, Hao-Hsiang Chang, Hua-En Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Vo, Tu Yan, Qingsen Zhu, Yun Su, Jinqiu Zhang, Yanning Zhang, Cheng Luo, Jiaying Cho, Youngsun Lee, Nakyung Computer Vision Lab CAIDAS IFI University of Würzburg Germany Sony Interactive Entertainment CA United States Huawei Technologies Co. Ltd. China NetEase Games AI Lab Nanjing University of Science and Technology China Tencent China Attrsense Korea Republic of Sanechips Co Ltd Ant Group China East China Normal University China Shopee Dalian University of Technology Xiaomi Inc. China China Zhejiang Dahua Technology Co. Ltd. China Multimedia Department Xiaomi Inc. China Korea Photonic Technology Institute Korea Republic of School of Computer Science and Engineering Southeast University China University Al. I. Cuza Iasi Romania Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Northwestern Polytechnical University China KC Machine Learning Lab CJ OliveNetworks AI Research
This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (... 详细信息
来源: 评论
Student-Teacher Learning from Clean Inputs to Noisy Inputs
Student-Teacher Learning from Clean Inputs to Noisy Inputs
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hong, Guanzhe Mao, Zhiyuan Lin, Xiaojun Chan, Stanley H. Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA
Feature-based student-teacher learning, a training method that encourages the student's hidden features to mimic those of the teacher network, is empirically successful in transferring the knowledge from a pre-tra... 详细信息
来源: 评论
Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Exploiting Spatial Dimensions of Latent in GAN for Real-time...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kim, Hyunsu Choi, Yunjey Kim, Junho Yoo, Sungjoo Uh, Youngjung NAVER AI Lab Seoul South Korea Seoul Natl Univ Seoul South Korea Yonsei Univ Seoul South Korea
Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. Although manipulating the latent vectors controls the synthesized outputs, editing real images with GANs suffers from i) t... 详细信息
来源: 评论
DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows
DeFlow: Learning Complex Image Degradations from Unpaired Da...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wolf, Valentin Lugmayr, Andreas Danelljan, Martin Van Gool, Luc Timofte, Radu Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
The difficulty of obtaining paired data remains a major bottleneck for learning image restoration and enhancement models for real-world applications. Current strategies aim to synthesize realistic training data by mod... 详细信息
来源: 评论
Few-shot Open-set recognition by Transformation Consistency
Few-shot Open-set Recognition by Transformation Consistency
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jeong, Minki Choi, Seokeon Kim, Changick Korea Adv Inst Sci & Technol Daejeon South Korea
In this paper, we attack a few-shot open-set recognition (FSOSR) problem, which is a combination of few-shot learning (FSL) and open-set recognition (OSR). It aims to quickly adapt a model to a given small set of labe... 详细信息
来源: 评论
VirFace: Enhancing Face recognition via Unlabeled Shallow Data
VirFace: Enhancing Face Recognition via Unlabeled Shallow Da...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Li, Wenyu Guo, Tianchu Li, Pengyu Chen, Binghui Wang, Biao Zuo, Wangmeng Zhang, Lei Harbin Inst Technol Sch Comp Sci & Technol Harbin Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China
Recently, how to exploit unlabeled data for training face recognition models has been attracting increasing attention. However, few works consider the unlabeled shallow data(1) in real-world scenarios. The existing se... 详细信息
来源: 评论
Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps
Guided Interactive Video Object Segmentation Using Reliabili...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Heo, Yuk Koh, Yeong Jun Kim, Chang-Su Korea Univ Seoul South Korea Chungnam Natl Univ Daejeon South Korea
We propose a novel guided interactive segmentation (GIS) algorithm for video objects to improve the segmentation accuracy and reduce the interaction time. First, we design the reliability-based attention module to ana... 详细信息
来源: 评论