咨询与建议

限定检索结果

文献类型

  • 22,999 篇 会议
  • 107 册 图书
  • 93 篇 期刊文献

馆藏范围

  • 23,198 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,478 篇 软件工程
    • 2,445 篇 机械工程
    • 1,715 篇 光学工程
    • 1,076 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 85 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,240 篇 理学
    • 1,939 篇 物理学
    • 1,639 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 62 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,132 篇 英文
  • 38 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23199 条 记 录,以下是4811-4820 订阅
排序:
CASTing Your Model: Learning to Localize Improves Self-Supervised Representations
CASTing Your Model: Learning to Localize Improves Self-Super...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Selvaraju, Ramprasaath R. Desai, Karan Johnson, Justin Naik, Nikhil Salesforce Res Palo Alto CA 94301 USA Univ Michigan Ann Arbor MI 48109 USA
Recent advances in self-supervised learning (SSL) have largely closed the gap with supervised ImageNet pretraining. Despite their success these methods have been primarily applied to unlabeled ImageNet images, and sho... 详细信息
来源: 评论
Convolutional Hough Matching Networks
Convolutional Hough Matching Networks
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Min, Juhong Cho, Minsu POSTECH CSE Pohang South Korea POSTECH GSAI Pohang South Korea
Despite advances in feature representation, leveraging geometric relations is crucial for establishing reliable visual correspondences under large variations of images. In this work we introduce a Hough transform pers... 详细信息
来源: 评论
LQF: Linear Quadratic Fine-Tuning
LQF: Linear Quadratic Fine-Tuning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Achille, Alessandro Golatkar, Aditya Ravichandran, Avinash Polito, Marzia Soatto, Stefano Amazon Web Serv Seattle WA 98109 USA Univ Calif Los Angeles Los Angeles CA 90024 USA
Classifiers that are linear in their parameters, and trained by optimizing a convex loss function, have predictable behavior with respect to changes in the training data, initial conditions, and optimization. Such des... 详细信息
来源: 评论
PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency Training
PixMatch: Unsupervised Domain Adaptation via Pixelwise Consi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Melas-Kyriazi, Luke Manrai, Arjun K. Harvard Univ Cambridge MA 02138 USA Harvard Univ Boston Childrens Hosp Boston MA 02115 USA
Unsupervised domain adaptation is a promising technique for semantic segmentation and other computer vision tasks for which large-scale data annotation is costly and time-consuming. In semantic segmentation, it is att... 详细信息
来源: 评论
Efficient Object Embedding for Spliced Image Retrieval
Efficient Object Embedding for Spliced Image Retrieval
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Bor-Chun Wu, Zuxuan Davis, Larry S. Lim, Ser-Nam Univ Maryland College Pk MD 20742 USA Facebook AI Menlo Pk CA 94025 USA Fudan Univ Shanghai Peoples R China
Detecting spliced images is one of the emerging challenges in computer vision. Unlike prior methods that focus on detecting low-level artifacts generated during the manipulation process, we use an image retrieval appr... 详细信息
来源: 评论
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning
Single-Stage Instance Shadow Detection with Bidirectional Re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Tianyu Hu, Xiaowei Fu, Chi-Wing Heng, Pheng-Ann Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Guangdong Hong Kong Macao Joint Lab Human Machine Beijing Peoples R China
Instance shadow detection aims to find shadow instances paired with the objects that cast the shadows. The previous work adopts a two-stage framework to first predict shadow instances, object instances, and shadow-obj... 详细信息
来源: 评论
ReAgent: Point Cloud Registration using Imitation and Reinforcement Learning
ReAgent: Point Cloud Registration using Imitation and Reinfo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bauer, Dominik Patten, Timothy Vincze, Markus TU Wien Vienna Austria
Point cloud registration is a common step in many 3D computer vision tasks such as object pose estimation, where a 3D model is aligned to an observation. Classical registration methods generalize well to novel domains... 详细信息
来源: 评论
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNet V2: Sparse Feature Reactivation for Deep Network...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Le Jiang, Haojun Cai, Ruojin Wang, Yulin Song, Shiji Huang, Gao Tian, Qi Tsinghua Univ Dept Automat Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China Cornell Univ Ithaca NY 14853 USA Huawei Cloud & AI Ithaca NY USA
Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet [14] has shown that this mechanism can befiirther improved if ... 详细信息
来源: 评论
Cross-Domain Similarity Learning for Face recognition in Unseen Domains
Cross-Domain Similarity Learning for Face Recognition in Uns...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Faraki, Masoud Yu, Xiang Tsai, Yi-Hsuan Suh, Yumin Chandraker, Manmohan NEC Labs Amer Princeton NJ 08540 USA Univ Calif San Diego La Jolla CA 92093 USA
Face recognition models trained under the assumption of identical training and test distributions often suffer from poor generalization when faced with unknown variations, such as a novel ethnicity or unpredictable in... 详细信息
来源: 评论
EGF: An Improved Edge Detection Model for Low-Resolution Images  2
EGF: An Improved Edge Detection Model for Low-Resolution Ima...
收藏 引用
2nd ieee International conference on Futuristic Technologies, INCOFT 2023
作者: Deepak Raj, D.M. Shanmuganathan, Harinee Geetha, A. Keerthika, V. Alliance University Department of Computer Science and Engineering Banglore India
Edge detection can benefit many different industries and domains, including computer vision, machine learning, image analysis, remote sensing, thermal imaging, pattern recognition, and medical imaging. The technique o... 详细信息
来源: 评论