咨询与建议

限定检索结果

文献类型

  • 23,000 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,217 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,622 篇 工学
    • 11,107 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 784 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 107 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 86 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,241 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,186 篇 computer vision
  • 3,966 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 52 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23218 条 记 录,以下是4831-4840 订阅
Weakly Supervised Video Salient Object Detection
Weakly Supervised Video Salient Object Detection
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Wangbo Zhang, Jing Li, Long Barnes, Nick Liu, Nian Han, Junwei Northwestern Polytech Univ Brain & Artificial Intelligence Lab Xian Peoples R China Australian Natl Univ Canberra ACT Australia CSIRO Canberra ACT Australia Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the... 详细信息
来源: 评论
Neural Response Interpretation through the Lens of Critical Pathways
Neural Response Interpretation through the Lens of Critical ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Khakzar, Ashkan Baselizadeh, Soroosh Khanduja, Saurabh Rupprecht, Christian Kim, Seong Tae Navab, Nassir CAMP Tech Univ Munich Munich Germany VGG Univ Oxford Oxford England
Is critical input information encoded in specific sparse pathways within the neural network? In this work, we discuss the problem of identifying these critical pathways and subsequently leverage them for interpreting ... 详细信息
来源: 评论
AdaDeId: Adjust Your Identity Attribute Freely  26
AdaDeId: Adjust Your Identity Attribute Freely
收藏 引用
26th International conference on pattern recognition, ICPR 2022
作者: Ma, Tianxiang Li, Dongze Wang, Wei Dong, Jing University of Chinese Academy of Sciences School of Artificial Intelligence China Chinese Academy of Sciences CRIPAC & NLPR Institute of Automation China
Face de-identification has drawn increasing attention in recent years. It is important to protect people's identity information meanwhile keeping the utility of the face data in many computer vision tasks. We prop... 详细信息
来源: 评论
A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification
A Realistic Evaluation of Semi-Supervised Learning for Fine-...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Su, Jong-Chyi Cheng, Zezhou Maji, Subhransu Univ Massachusetts Amherst Amherst MA 01003 USA
We evaluate the effectiveness of semi-supervised learning (SSL) on a realistic benchmark where data exhibits considerable class imbalance and contains images from novel classes. Our benchmark consists of two fine-grai... 详细信息
来源: 评论
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning
Self-Promoted Prototype Refinement for Few-Shot Class-Increm...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Kai Cao, Yang Zhai, Wei Cheng, Jie Zha, Zheng-Jun Univ Sci & Technol China Hefei Peoples R China Huawei Technol Co Ltd Shenzhen Peoples R China
Few-shot class-incremental learning is to recognize the new classes given few samples and not forget the old classes. It is a challenging task since representation optimization and prototype reorganization can only be... 详细信息
来源: 评论
Image Change Captioning by Learning from an Auxiliary Task
Image Change Captioning by Learning from an Auxiliary Task
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hosseinzadeh, Mehrdad Wang, Yang Univ Manitoba Winnipeg MB Canada Huawei Technol Canada Markham ON Canada
We tackle the challenging task of image change captioning. The goal is to describe the subtle difference between two very similar images by generating a sentence caption. While the recent methods mainly focus on propo... 详细信息
来源: 评论
Remote Sensing Image Object Detection Method with Feature Denoising Fusion Module  7
Remote Sensing Image Object Detection Method with Feature De...
收藏 引用
7th ieee Advanced Information Technology, Electronic and Automation Control conference, IAEAC 2024
作者: Chen, Penghui Li, Qishen Li, Qiufeng Wu, Zhongyu Nanchang Hangkong University School of Information Engineering Jiangxi Nanchang China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Jiangxi Nanchang China Nanchang Hangkong University School of Software Jiangxi Nanchang China Jiangxi Nanchang China
Remote sensing object detection is an important research area in computer vision, widely applied in both military and civilian domains. However, challenges in remote sensing image object detection such as large image ... 详细信息
来源: 评论
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions
NExT-QA: Next Phase of Question-Answering to Explaining Temp...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Xiao, Junbin Shang, Xindi Yao, Angela Chua, Tat-Seng Natl Univ Singapore Dept Comp Sci Singapore Singapore
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark to advance video understanding from describing to explaining the temporal actions. Based on the dataset, we set up multi-choice ... 详细信息
来源: 评论
Bilinear Parameterization for Non-Separable Singular Value Penalties
Bilinear Parameterization for Non-Separable Singular Value P...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ornhag, Marcus Valtonen Iglesias, Jose Pedro Olsson, Carl Lund Univ Ctr Math Sci Lund Sweden Chalmers Univ Technol Dept Elect Engn Gothenburg Sweden
Low rank inducing penalties have been proven to successfully uncover fundamental structures considered in computer vision and machine learning;however, such methods generally lead to non-convex optimization problems. ... 详细信息
来源: 评论
Bipartite Graph Network with Adaptive Message Passing for Unbiased Scene Graph Generation
Bipartite Graph Network with Adaptive Message Passing for Un...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Li, Rongjie Zhang, Songyang Wan, Bo He, Xuming ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Katholieke Univ Leuven Dept Elect Engn ESAT Leuven Belgium
Scene graph generation is an important visual understanding task with a broad range of vision applications. Despite recent tremendous progress, it remains challenging due to the intrinsic long-tailed class distributio... 详细信息
来源: 评论