咨询与建议

限定检索结果

文献类型

  • 23,001 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,218 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,623 篇 工学
    • 11,108 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 785 篇 信息与通信工程
    • 412 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 108 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 87 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,242 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 107 篇 化学
  • 522 篇 管理学
    • 311 篇 图书情报与档案管...
    • 224 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,516 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 53 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23219 条 记 录,以下是4851-4860 订阅
Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets
Towards Good Practices for Efficiently Annotating Large-Scal...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liao, Yuan-Hong Kar, Amlan Fidler, Sanja Univ Toronto Toronto ON Canada Vector Inst Toronto ON Canada NVIDIA Santa Clara CA USA
Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate effic... 详细信息
来源: 评论
Probabilistic Embeddings for Cross-Modal Retrieval
Probabilistic Embeddings for Cross-Modal Retrieval
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chun, Sanghyuk Oh, Seong Joon de Rezende, Rafael Sampaio Kalantidis, Yannis Larlus, Diane NAVER AI Lab Seongnam South Korea NAVER Labs Europe Meylan France
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the corres... 详细信息
来源: 评论
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lanchantin, Jack Wang, Tianlu Ordonez, Vicente Qi, Yanjun Univ Virginia Charlottesville VA 22903 USA
Multi-label image classification is the task of predicting a set of labels corresponding to objects, attributes or other entities present in an image. In this work we propose the Classification Transformer (C-Tran), a... 详细信息
来源: 评论
Towards Open World Object Detection
Towards Open World Object Detection
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Joseph, K. J. Khan, Salman Khan, Fahad Shahbaz Balasubramanian, Vineeth N. Indian Inst Technol Hyderabad Hyderabad India Mohamed Bin Zayed Univ AI Abu Dhabi U Arab Emirates Australian Natl Univ Canberra ACT Australia Linkoping Univ Linkoping Sweden
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventua... 详细信息
来源: 评论
Learning Tensor Low-Rank Prior for Hyperspectral Image Reconstruction
Learning Tensor Low-Rank Prior for Hyperspectral Image Recon...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Shipeng Wang, Lizhi Zhang, Lei Huang, Hua Xi An Jiao Tong Univ Xian Peoples R China Beijing Inst Technol Beijing Peoples R China Beijing Normal Univ Beijing Peoples R China
Snapshot hyperspectral imaging has been developed to capture the spectral information of dynamic scenes. In this paper, we propose a deep neural network by learning the tensor low-rank prior of hyperspectral images (H... 详细信息
来源: 评论
Complementary Relation Contrastive Distillation
Complementary Relation Contrastive Distillation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Jinguo Tang, Shixiang Chen, Dapeng Yu, Shijie Liu, Yakun Rong, Mingzhe Yang, Aijun Wang, Xiaohua Xi An Jiao Tong Univ Xian Peoples R China Univ Sydney Sydney NSW Australia Sensetime Grp Ltd Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China
Knowledge distillation aims to transfer representation ability from a teacher model to a student model. Previous approaches focus on either individual representation distillation or inter-sample similarity preservatio... 详细信息
来源: 评论
Fast and Accurate Model Scaling
Fast and Accurate Model Scaling
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Dollar, Piotr Singh, Mannat Girshick, Ross Facebook AI Res FAIR Menlo Pk CA 94025 USA
In this work we analyze strategies for convolutional neural network scaling;that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representatio... 详细信息
来源: 评论
Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation
Temporally-Weighted Hierarchical Clustering for Unsupervised...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sarfraz, M. Saquib Murray, Naila Sharma, Vivek Diba, Ali van Gool, Luc Stiefelhagen, Rainer Karlsruhe Inst Technol Karlsruhe Germany Facebook AI Res Menlo Pk CA USA MIT Cambridge MA 02139 USA Harvard Med Sch Boston MA 02115 USA Katholieke Univ Leuven Leuven Belgium Swiss Fed Inst Technol Zurich Switzerland Daimler TSS Ulm Germany
Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks,... 详细信息
来源: 评论
NBNet: Noise Basis Learning for Image Denoising with Subspace Projection
NBNet: Noise Basis Learning for Image Denoising with Subspac...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cheng, Shen Wang, Yuzhi Huang, Haibin Liu, Donghao Fan, Haoqiang Liu, Shuaicheng Megvii Technol Beijing Peoples R China Kuaishou Technol Beijing Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China
In this paper, we introduce NBNet, a novel framework for image denoising. Unlike previous works, we propose to tackle this challenging problem from a new perspective: noise reduction by image-adaptive projection. Spec... 详细信息
来源: 评论
Learning Progressive Point Embeddings for 3D Point Cloud Generation
Learning Progressive Point Embeddings for 3D Point Cloud Gen...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wen, Cheng Yu, Baosheng Tao, Dacheng Univ Sydney Fac Engn Sch Comp Sci 6 Cleveland St Darlington NSW 2008 Australia
Generative models for 3D point clouds are extremely important for scene/object reconstruction applications in autonomous driving and robotics. Despite recent success of deep learning-based representation learning, it ... 详细信息
来源: 评论