咨询与建议

限定检索结果

文献类型

  • 23,001 篇 会议
  • 126 册 图书
  • 92 篇 期刊文献

馆藏范围

  • 23,218 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,623 篇 工学
    • 11,108 篇 计算机科学与技术...
    • 3,479 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,075 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 785 篇 信息与通信工程
    • 412 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 108 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 87 篇 交通运输工程
    • 84 篇 土木工程
  • 3,494 篇 医学
    • 3,481 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,242 篇 理学
    • 1,939 篇 物理学
    • 1,640 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 107 篇 化学
  • 522 篇 管理学
    • 311 篇 图书情报与档案管...
    • 224 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,187 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,516 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,205 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,087 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 107 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 80 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 61 篇 tsinghua univ pe...
  • 60 篇 peking univ peop...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 64 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 34 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan
  • 27 篇 vasconcelos nuno

语言

  • 23,137 篇 英文
  • 53 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23219 条 记 录,以下是581-590 订阅
排序:
When NAS Meets Trees: An Efficient Algorithm for Neural Architecture Search
When NAS Meets Trees: An Efficient Algorithm for Neural Arch...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Qian, Guocheng Zhang, Xuanyang Li, Guohao Zhao, Chen Chen, Yukang Zhang, Xiangyu Ghanem, Bernard Sun, Jian King Abdullah Univ Sci & Technol KAUST Thuwal Saudi Arabia MEGVII Technol Beijing Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
The key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space. We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by explorin... 详细信息
来源: 评论
Self-supervised vision Transformers for Land-cover Segmentation and Classification
Self-supervised Vision Transformers for Land-cover Segmentat...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Scheibenreif, Linus Hanna, Joelle Mommert, Michael Borth, Damian Univ St Gallen AIML Lab Sch Comp Sci Rosenbergstr 30 St Gallen Switzerland
Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use ... 详细信息
来源: 评论
Disentangled Loss for Low-Bit Quantization-Aware Training
Disentangled Loss for Low-Bit Quantization-Aware Training
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Allenet, Thibault Briand, David Bichler, Olivier Sentieys, Olivier CEA LIST Saclay France Univ Rennes INRIA Rennes France
Quantization-Aware Training (QAT) has recently showed a lot of potential for low-bit settings in the context of image classification. Approaches based on QAT are using the Cross Entropy Loss function which is the refe... 详细信息
来源: 评论
Learning to Name Classes for vision and Language Models
Learning to Name Classes for Vision and Language Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Parisot, Sarah Yang, Yongxin McDonagh, Steven Huawei Noahs Ark Lab Montreal PQ Canada
Large scale vision and language models can achieve impressive zero-shot recognition performance by mapping class specific text queries to image content. Two distinct challenges that remain however, are high sensitivit... 详细信息
来源: 评论
EKILA: Synthetic Media Provenance and Attribution for Generative Art
EKILA: Synthetic Media Provenance and Attribution for Genera...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Balan, Kar Agarwal, Shruti Jenni, Simon Parsons, Andy Gilbert, Andrew Collomosse, John University of Surrey United Kingdom Adobe Inc.
We present EKILA;a decentralized framework that enables creatives to receive recognition and reward for their contributions to generative AI (GenAI). EKILA proposes a robust visual attribution technique and combines t... 详细信息
来源: 评论
Initialization Noise in Image Gradients and Saliency Maps
Initialization Noise in Image Gradients and Saliency Maps
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Woerl, Ann-Christin Disselhoff, Jan Wand, Michael Johannes Gutenberg Univ Mainz Inst Comp Sci Mainz Germany
In this paper, we examine gradients of logits of image classification CNNs by input pixel values. We observe that these fluctuate considerably with training randomness, such as the random initialization of the network... 详细信息
来源: 评论
Out-Of-Distribution Detection In Unsupervised Continual Learning
Out-Of-Distribution Detection In Unsupervised Continual Lear...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: He, Jiangpeng Zhu, Fengqing Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Unsupervised continual learning aims to learn new tasks incrementally without requiring human annotations. However, most existing methods, especially those targeted on image classification, only work in a simplified s... 详细信息
来源: 评论
FairCLIP: Harnessing Fairness in vision-Language Learning
FairCLIP: Harnessing Fairness in Vision-Language Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Luol, Yan Shil, Min Khan, Muhammad Osama Afzal, Muhammad Muneeb Huang, Hao Yuan, Shuaihang Tian, Yu Song, Luo Kouhana, Ava Elze, Tobias Fang, Yi Wang, Mengyu Harvard Univ Harvard Ophthalmol AI Lab Cambridge MA 02138 USA NYU Tandon Sch Engn New York NY USA New York Univ Abu Dhabi Multimedia & Visual Comp Lab Abu Dhabi U Arab Emirates
Fairness is a critical concern in deep learning, especially in healthcare, where these models influence diagnoses and treatment decisions. Although fairness has been investigated in the vision-only domain, the fairnes... 详细信息
来源: 评论
Enriched Robust Multi-View Kernel Subspace Clustering
Enriched Robust Multi-View Kernel Subspace Clustering
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Mengyuan Liu, Kai Clemson Univ Clemson SC 29631 USA
Subspace clustering is to find underlying low-dimensional subspaces and cluster the data points correctly. In this paper, we propose a novel multi-view subspace clustering method. Most existing methods suffer from two... 详细信息
来源: 评论
Attenuating Catastrophic Forgetting by Joint Contrastive and Incremental Learning
Attenuating Catastrophic Forgetting by Joint Contrastive and...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ferdinand, Quentin Clement, Benoit Oliveau, Quentin Le Chenadec, Gilles Papadakis, Panagiotis Naval Grp Res Cherbourg En Cotentin France ENSTA Bretagne Lab STICC UMR 6285 Brest France IMT Atlantique Lab STICC UMR 6285 Brest France
In class incremental learning, discriminative models are trained to classify images while adapting to new instances and classes incrementally. Training a model to adapt to new classes without total access to previous ... 详细信息
来源: 评论