咨询与建议

限定检索结果

文献类型

  • 23,008 篇 会议
  • 126 册 图书
  • 94 篇 期刊文献

馆藏范围

  • 23,227 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,631 篇 工学
    • 11,116 篇 计算机科学与技术...
    • 3,481 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,080 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 788 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 109 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 88 篇 交通运输工程
    • 84 篇 土木工程
  • 3,495 篇 医学
    • 3,482 篇 临床医学
    • 82 篇 基础医学(可授医学...
  • 3,246 篇 理学
    • 1,941 篇 物理学
    • 1,643 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,186 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,206 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 105 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 79 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 60 篇 peking univ peop...
  • 60 篇 tsinghua univ pe...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 65 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 35 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 29 篇 ling haibin
  • 29 篇 darrell trevor
  • 29 篇 pascal fua
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan

语言

  • 22,989 篇 英文
  • 210 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23228 条 记 录,以下是691-700 订阅
Less is More: Proxy Datasets in NAS approaches
Less is More: Proxy Datasets in NAS approaches
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Moser, Brian Raue, Federico Hees, Joern Dengel, Andreas German Res Ctr Artificial Intelligence DFKI Darmstadt Germany TU Kaiserslautern Kaiserslautern Germany
Neural Architecture Search (NAS) defines the design of Neural Networks as a search problem. Unfortunately, NAS is computationally intensive because of various possibilities depending on the number of elements in the d... 详细信息
来源: 评论
Sea Situational Awareness (SeaSAw) Dataset
Sea Situational Awareness (SeaSAw) Dataset
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kaur, Parneet Aziz, Arslan Jain, Darshan Patel, Harshil Hirokawa, Jonathan Townsend, Lachlan Reimers, Christoph Hua, Fiona
Vessels move 90% of international cargo by volume, with the marine economy contributing to 5.1% of global GDP. As one of the oldest industries, the marine industry has yet to embrace innovations in modern technology t... 详细信息
来源: 评论
Video Action Detection: Analysing Limitations and Challenges
Video Action Detection: Analysing Limitations and Challenges
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Modi, Rajat Rana, Aayush Jung Kumar, Akash Tirupattur, Praveen Vyas, Shruti Rawat, Yogesh Singh Shah, Mubarak Univ Cent Florida Ctr Res Comp Vis Orlando FL 32816 USA
Beyond possessing large enough size to feed data hungry machines (eg, transformers), what attributes measure the quality of a dataset? Assuming that the definitions of such attributes do exist, how do we quantify amon... 详细信息
来源: 评论
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training
BigDetection: A Large-scale Benchmark for Improved Object De...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cai, Likun Zhang, Zhi Zhu, Yi Zhang, Li Li, Mu Xue, Xiangyang Fudan Univ Shanghai Peoples R China Amazon Inc Seattle WA USA
Multiple datasets and open challenges for object detection have been introduced in recent years. To build more general and powerful object detection systems, in this paper, we construct a new large-scale benchmark ter... 详细信息
来源: 评论
Dress Code: High-Resolution Multi-Category Virtual Try-On
Dress Code: High-Resolution Multi-Category Virtual Try-On
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Morelli, Davide Fincato, Matteo Cornia, Marcella Landi, Federico Cesari, Fabio Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy YOOX NET A PORTER GRP Milan Italy
Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Existing literature focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglec... 详细信息
来源: 评论
Learning Generalized Feature for Temporal Action Detection: Application for Natural Driving Action recognition Challenge
Learning Generalized Feature for Temporal Action Detection: ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chuong Nguyen Ngoc Nguyen Su Huynh Vinh Nguyen Son Nguyen CyberCore AI Morioka Iwate Japan
This paper reports our approach for the 2022 AI City Challenge - Naturalistic Driving Action recognition (Track 3), where the objective is to detect when and what kinds of actions that a driver performs in a long, unt... 详细信息
来源: 评论
PseudoProp: Robust Pseudo-Label Generation for Semi-Supervised Object Detection in Autonomous Driving Systems
PseudoProp: Robust Pseudo-Label Generation for Semi-Supervis...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hu, Shu Liu, Chun-Hao Dutta, Jayanta Chang, Ming-Ching Lyu, Siwei Ramakrishnan, Naveen Univ Buffalo SUNY Buffalo NY USA Bosch Ctr Artificial Intelligence Sunnyvale CA 94085 USA SUNY Albany Albany NY 12222 USA Amazon Seattle WA USA
Semi-supervised object detection methods are widely used in autonomous driving systems, where only a fraction of objects are labeled. To propagate information from the labeled objects to the unlabeled ones, pseudo-lab... 详细信息
来源: 评论
On-Sensor Binarized Fully Convolutional Neural Network for Localisation and Coarse Segmentation
On-Sensor Binarized Fully Convolutional Neural Network for L...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yanan Lu, Yao Shanghai Univ Sch Microelect Shanghai Peoples R China Univ Bristol Visual Informat Lab Bristol Avon England
Current neural networks are compatible with high-performance GPU/CPUs. However, implementing neural networks on emerging embedded sensor for inference is challenging due to sensor's unique hardware architecture an... 详细信息
来源: 评论
SqueezeNeRF: Further factorized FastNeRF for memory-efficient inference
SqueezeNeRF: Further factorized FastNeRF for memory-efficien...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wadhwani, Krishna Kojima, Tamaki Sony Grp Corp Nihonbashi Tokyo Japan
Neural Radiance Fields (NeRF) has emerged as the state-of-the-art method for novel view generation of complex scenes, but is very slow during inference. Recently, there have been multiple works on speeding up NeRF inf... 详细信息
来源: 评论
Continual Learning Based on OOD Detection and Task Masking
Continual Learning Based on OOD Detection and Task Masking
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kim, Gyuhak Esmaeilpour, Sepideh Xiao, Changnan Liu, Bing Univ Illinois Chicago IL 60607 USA ByteDance Beijing Peoples R China
Existing continual learning techniques focus on either task incremental learning (TIL) or class incremental learning (CIL) problem, but not both. CIL and TIL differ mainly in that the task-id is provided for each test... 详细信息
来源: 评论