咨询与建议

限定检索结果

文献类型

  • 23,008 篇 会议
  • 126 册 图书
  • 94 篇 期刊文献

馆藏范围

  • 23,227 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,631 篇 工学
    • 11,116 篇 计算机科学与技术...
    • 3,481 篇 软件工程
    • 2,445 篇 机械工程
    • 1,716 篇 光学工程
    • 1,080 篇 电气工程
    • 1,014 篇 控制科学与工程
    • 788 篇 信息与通信工程
    • 411 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 196 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 109 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 88 篇 建筑学
    • 88 篇 交通运输工程
    • 84 篇 土木工程
  • 3,495 篇 医学
    • 3,482 篇 临床医学
    • 82 篇 基础医学(可授医学...
  • 3,246 篇 理学
    • 1,941 篇 物理学
    • 1,643 篇 数学
    • 563 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 106 篇 化学
  • 521 篇 管理学
    • 311 篇 图书情报与档案管...
    • 223 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 66 篇 法学
    • 63 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,186 篇 computer vision
  • 3,967 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,815 篇 cameras
  • 1,515 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,206 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,092 篇 computer science
  • 1,088 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 105 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 79 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 72 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 60 篇 peking univ peop...
  • 60 篇 tsinghua univ pe...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 72 篇 timofte radu
  • 65 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 35 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 29 篇 ling haibin
  • 29 篇 darrell trevor
  • 29 篇 pascal fua
  • 29 篇 li fei-fei
  • 28 篇 li xin
  • 28 篇 ying shan

语言

  • 22,989 篇 英文
  • 210 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23228 条 记 录,以下是761-770 订阅
TinyOps: ImageNet Scale Deep Learning on Microcontrollers
TinyOps: ImageNet Scale Deep Learning on Microcontrollers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sadiq, Sulaiman Hare, Jonathon Maji, Partha Craske, Simon Merrett, Geoff, V Univ Southampton Southampton Hants England ARM Ltd Cambridge England
Deep Learning on microcontroller (MCU) based IoT devices is extremely challenging due to memory constraints. Prior approaches focus on using internal memory or external memories exclusively which limit either accuracy... 详细信息
来源: 评论
Three Stream Graph Attention Network using Dynamic Patch Selection for the classification of micro-expressions
Three Stream Graph Attention Network using Dynamic Patch Sel...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jain, Ankith Kumar, Rakesh Bhanu, Bir Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA
To understand the genuine emotions expressed by humans during social interactions, it is necessary to recognize the subtle changes on the face (micro-expressions) demonstrated by an individual. Facial micro-expression... 详细信息
来源: 评论
HR-STAN: High-Resolution Spatio-Temporal Attention Network for 3D Human Motion Prediction
HR-STAN: High-Resolution Spatio-Temporal Attention Network f...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Medjaouri, Omar Desai, Kevin Univ Texas San Antonio San Antonio TX 78249 USA
3D human motion prediction requires making sense of the complex spatio-temporal dynamics which underpin human motion to make highly accurate predictions. Part of this complexity is due to the trade-off between long-te... 详细信息
来源: 评论
NTIRE 2024 Image Shadow Removal Challenge Report
NTIRE 2024 Image Shadow Removal Challenge Report
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Wu, Zongwei Zhou, Zhuyun Chen, Cailian Zhou, Han Timofte, Radu Dong, Wei Tian, Yuqiong Chen, Jun Lul, Xin Zhu, Yurui Wang, Xi Li, Dong Xiao, Jie Zhang, Yunpeng Fu, Xueyang Zha, Zheng-Jun Zhang, Zhao Zhao, Suiyi Wang, Bo Luo, Yan Wei, Yanyan Xiaol, Jie Ful, Xueyang Zhal, Zheng-Jun Lu, Xin Zhao, Zhihao Sun, Long Yang, Tingting Pan, Jinshan Tang, Jinhui Dong, Jiangxin Benjdira, Bilel Nassif, Mohammed Koubaa, Anis Elhayek, Ahmed Ali, Anas M. Tokoro, Kyotaro Kawai, Kento Yokoyama, Kaname Seno, Takuya Kondo, Yuki Ukita, Norimichi Li, Chenghua Yang, Bo Wu, Zhiqi Chen, Gao Yu, Yihan Chen, Sixiang Mane, Kai Ye, Tian Zou, Wenbin Lin, Yunlong Xing, Zhaohu Bai, Jinbin Chai, Wenhao Zhu, Lei Maheshwari, Ritik Verma, Rakshank Tekchandanil, Rahul Hambarde, Praful Tazil, Satya Narayan Vipparthi, Santosh Kumar Murala, Subrahmanyam Lee, Jaeho Kim, Seongwan Sharif, S. M. A. Khujaev, Nodirkhuja Tsoy, Roman Gao, Fan Yan, Weidan Shao, Wenze Zhang, Dengyin Chen, Bin Zhang, Siqi Qian, Yanxin Chen, Yuanbin Zhou, Yuanbo Tong, Tong Wei, Rongfeng Sun, Ruiqi Liu, Yue Akalwadi, Nikhil Joshi, Amogh Malagi, Sampada Desai, Chaitra Tabib, Ramesh Ashok Mudenagudi, Uma Murtaza, Ali Khairuddin, Uswah Faudzi, Ahmad'Athif Mohd Dukre, Adinath Deshmukh, Vivek Phutke, Shruti S. Kulkarni, Ashutosh Gonde, Anil Karthik, Arun K. Manasa, N. Priyal, Shri Hari Hao, Wei Yan, Xingzhuo Fu, Minghan Univ Wurzburg Comp Vis Lab IFI & CAIDAS Wurzburg Germany Shanghai Jiao Tong Univ Shanghai Peoples R China McMaster Univ Dept Elect & Comp Engn Hamilton ON Canada Univ Sci & Technol China Hefei Peoples R China Hefei Univ Technol Hefei Peoples R China Nanjing Univ Sci & Technol Nanjing Jiangsu Peoples R China Prince Sultan Univ Robot & Internet Things Lab Riyadh 12435 Saudi Arabia Prince Muqrin Univ Artificial Intelligence Dept Medinah 41311 Saudi Arabia Toyota Technol Inst Intelligent Informat Media Lab Nagoya Japan Nanjing Artificial Intelligence Res IA AiRiA Nanjing Peoples R China Nanjing Normal Univ High Sch Jiangning Campus Nanjing Peoples R China Hong Kong Univ Sci & Technol Guangzhou Guangzhou Peoples R China South China Univ Technol Guangzhou Peoples R China Xiamen Univ Xiamen Peoples R China Natl Univ Singapore Singapore Singapore Univ Washington Seattle WA 98195 USA GEC Ajmer Kiranipura India CVPR Lab IIT Ropar Rupnagar India SCSS Trinity Coll Dublin Dublin Ireland Opt AI Seoul South Korea Nanjing Univ Posts & Telecommun Nanjing Peoples R China Fuzhou Univ Fuzhou Peoples R China Univ Hong Kong Logist & Supply Chain MultiTech R&D Ctr Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India KLE Technol Univ Sch Elect & Commun Engn Hubballi Karnataka India KLE Technol Univ Sch Comp Sci & Engn Hubballi Karnataka India Univ Teknol Malaysia Malaysia Japan Int Inst Technol MMT Kuala Lumpur Malaysia Univ Teknol Malaysia Ctr Artificial Intelligence & Robot CAIRO Kuala Lumpur Malaysia Shri Guru Gobind Singhji Inst Engn & Technol Nanded India Indian Inst Technol Ropar Comp Vis & Pattern Recognit Lab Rupnagar India Trinity Coll Dublin Sch Comp Sci & Stat CVPR Lab Dublin Ireland Shiv Nadar Univ Sch Engn Chennai Tamil Nadu India Fortinet Inc Sunnyvale CA USA Bosch Investment Ltd Shanghai Peoples R China Univ Saskatchewan Saskatoon
This work reviews the results of the NTIRE 2024 Challenge on Shadow Removal. Building on the last year edition, the current challenge was organized in two tracks, with a track focused on increased fidelity reconstruct... 详细信息
来源: 评论
An Empirical study of Data-Free Quantization's Tuning Robustness
An Empirical study of Data-Free Quantization's Tuning Robust...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Hong Wen, Yuxuan Ding, Yifu Yang, Zhen Guo, Yufei Qin, Haotong Beihang Univ Beijing Peoples R China Shanghai Aerosp Elect Technol Inst Shanghai Peoples R China China Aerosp Sci & Ind Corp Acad 2 Beijing Peoples R China
Deep convolutional neural networks are now performing increasingly superior in various fields, while the network parameters are getting massive as the advanced neural networks tend to be deeper. Among various model co... 详细信息
来源: 评论
Multi-Camera Vehicle Tracking Based on Occlusion-aware and Inter-vehicle Information
Multi-Camera Vehicle Tracking Based on Occlusion-aware and I...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yuming Zhang, Xiaochun Zhang, Bingzhen Zhang, Xiaoyong Wang, Sen Xu, Jianrong Shenzhen Urban Transport Planning Ctr Co Ltd Shenzhen Peoples R China
With the demands of analyzing and predicting traffic flow for applications in smart cities, Multi-Target Multi-Camera vehicle Tracking(MTMCT) at the city scale has become a fundamental problem. The MTMCT is challengin... 详细信息
来源: 评论
SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning
SaR: Self-adaptive Refinement on Pseudo Labels for Multiclas...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lai, Zhengfeng Wang, Chao Cheung, Sen-ching Chuah, Chen-Nee Univ Calif Davis Davis CA 95616 USA Southern Univ Sci & Technol Shenzhen Peoples R China Univ Kentucky Lexington KY 40506 USA
Class-imbalanced datasets can severely deteriorate the performance of semi-supervised learning (SSL). This is due to the confirmation bias especially when the pseudo labels are highly biased towards the majority class... 详细信息
来源: 评论
Learning Bottleneck Concepts in Image Classification
Learning Bottleneck Concepts in Image Classification
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Bowen Li, Liangzhi Nakashima, Lizyuta Nagahara, Hajime Osaka Univ Osaka Japan
Interpreting and explaining the behavior of deep neural networks is critical for many tasks. Explainable AI provides a way to address this challenge, mostly by providing per-pixel relevance to the decision. Yet, inter... 详细信息
来源: 评论
Multi-Dimensional vision Transformer Compression via Dependency Guided Gaussian Process Search
Multi-Dimensional Vision Transformer Compression via Depende...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hou, Zejiang Kung, Sun-Yuan Princeton Univ Princeton NJ 08544 USA
vision transformers (ViT) have recently attracted considerable attentions, but the huge computational cost remains an issue for practical deployment. Previous ViT pruning methods tend to prune the model along one dime... 详细信息
来源: 评论
How you feelin'? Learning Emotions and Mental States in Movie Scenes
How you feelin'? Learning Emotions and Mental States in Movi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Srivastava, Dhruv Singh, Aditya Kumar Tapaswi, Makarand IIIT Hyderabad CVIT Hyderabad Telangana India
Movie story analysis requires understanding characters' emotions and mental states. Towards this goal, we formulate emotion understanding as predicting a diverse and multi-label set of emotions at the level of a m... 详细信息
来源: 评论