咨询与建议

限定检索结果

文献类型

  • 23,015 篇 会议
  • 126 册 图书
  • 93 篇 期刊文献

馆藏范围

  • 23,233 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,637 篇 工学
    • 11,122 篇 计算机科学与技术...
    • 3,490 篇 软件工程
    • 2,446 篇 机械工程
    • 1,719 篇 光学工程
    • 1,078 篇 电气工程
    • 1,024 篇 控制科学与工程
    • 791 篇 信息与通信工程
    • 412 篇 仪器科学与技术
    • 352 篇 生物工程
    • 251 篇 生物医学工程(可授...
    • 198 篇 电子科学与技术(可...
    • 114 篇 化学工程与技术
    • 110 篇 安全科学与工程
    • 100 篇 测绘科学与技术
    • 89 篇 交通运输工程
    • 88 篇 建筑学
    • 84 篇 土木工程
  • 3,496 篇 医学
    • 3,482 篇 临床医学
    • 81 篇 基础医学(可授医学...
  • 3,249 篇 理学
    • 1,943 篇 物理学
    • 1,645 篇 数学
    • 564 篇 统计学(可授理学、...
    • 500 篇 生物学
    • 249 篇 系统科学
    • 108 篇 化学
  • 525 篇 管理学
    • 313 篇 图书情报与档案管...
    • 227 篇 管理科学与工程(可...
    • 76 篇 工商管理
  • 276 篇 艺术学
    • 276 篇 设计学(可授艺术学...
  • 67 篇 法学
    • 64 篇 社会学
  • 38 篇 农学
  • 28 篇 教育学
  • 22 篇 经济学
  • 10 篇 军事学
  • 4 篇 文学

主题

  • 10,190 篇 computer vision
  • 3,972 篇 pattern recognit...
  • 3,005 篇 training
  • 2,007 篇 computational mo...
  • 1,818 篇 visualization
  • 1,816 篇 cameras
  • 1,516 篇 feature extracti...
  • 1,481 篇 shape
  • 1,455 篇 three-dimensiona...
  • 1,438 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,206 篇 computer archite...
  • 1,155 篇 semantics
  • 1,147 篇 conferences
  • 1,107 篇 layout
  • 1,093 篇 computer science
  • 1,089 篇 object detection
  • 1,025 篇 benchmark testin...
  • 970 篇 codes
  • 922 篇 face recognition

机构

  • 136 篇 univ sci & techn...
  • 121 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 106 篇 carnegie mellon ...
  • 101 篇 tsinghua univers...
  • 101 篇 microsoft resear...
  • 95 篇 swiss fed inst t...
  • 93 篇 zhejiang univ pe...
  • 82 篇 university of sc...
  • 81 篇 zhejiang univers...
  • 79 篇 university of ch...
  • 77 篇 shanghai ai lab ...
  • 74 篇 shanghai jiao to...
  • 69 篇 national laborat...
  • 67 篇 microsoft res as...
  • 67 篇 alibaba grp peop...
  • 64 篇 adobe research
  • 60 篇 peking univ peop...
  • 60 篇 tsinghua univ pe...
  • 59 篇 univ oxford oxfo...

作者

  • 81 篇 van gool luc
  • 73 篇 timofte radu
  • 65 篇 zhang lei
  • 47 篇 luc van gool
  • 40 篇 yang yi
  • 40 篇 li stan z.
  • 37 篇 loy chen change
  • 35 篇 chen chen
  • 33 篇 xiaoou tang
  • 32 篇 liu yang
  • 32 篇 qi tian
  • 31 篇 tian qi
  • 31 篇 sun jian
  • 30 篇 murino vittorio
  • 29 篇 darrell trevor
  • 29 篇 pascal fua
  • 29 篇 li fei-fei
  • 28 篇 ling haibin
  • 28 篇 li xin
  • 28 篇 ying shan

语言

  • 22,989 篇 英文
  • 216 篇 其他
  • 22 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition Workshops"
23234 条 记 录,以下是981-990 订阅
排序:
Real-time Hyper-Dimensional Reconfiguration at the Edge using Hardware Accelerators
Real-time Hyper-Dimensional Reconfiguration at the Edge usin...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kandaswamy, Indhumathi Farkya, Saurabh Daniels, Zachary van der Wal, Gooitzen Raghavan, Aswin Zhang, Yuzheng Hu, Jun Lomnitz, Michael Isnardi, Michael Zhang, David Piacentino, Michael SRI Int Ctr Vis Technol Princeton NJ 08540 USA
In this paper we present Hyper-Dimensional Reconfigurable Analytics at the Tactical Edge (HyDRATE) using low-SWaP embedded hardware that can perform real-time reconfiguration at the edge leveraging non-MAC (free of fl... 详细信息
来源: 评论
An Once-for-All Budgeted Pruning Framework for ConvNets Considering Input Resolution
An Once-for-All Budgeted Pruning Framework for ConvNets Cons...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sun, Wenyu Cao, Jian Xu, Pengtao Liu, Xiangcheng Zhang, Yuan Wang, Yuan Peking Univ Sch Software & Microelect Beijing Peoples R China Peking Univ Sch Integrated Circuits Beijing Peoples R China
We propose an efficient once-for-all budgeted pruning framework (OFARPruning) to find many compact network architectures close to winner tickets in the early training stage considering the effect of input resolution d... 详细信息
来源: 评论
Transformer for Single Image Super-Resolution
Transformer for Single Image Super-Resolution
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lu, Zhisheng Li, Juncheng Liu, Hong Huang, Chaoyan Zhang, Linlin Zeng, Tieyong Peking Univ Shenzhen Grad Sch Shenzhen Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Nanjing Univ Posts & Telecommun Nanjing Peoples R China
Single image super-resolution (SISR) has witnessed great strides with the development of deep learning. However, most existing studies focus on building more complex networks with a massive number of layers. Recently,... 详细信息
来源: 评论
Comprehensive and Delicate: An Efficient Transformer for Image Restoration
Comprehensive and Delicate: An Efficient Transformer for Ima...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Haiyu Gou, Yuanbiao Li, Boyun Peng, Dezhong Lv, Jiancheng Peng, Xi Sichuan Univ Coll Comp Sci Chengdu Peoples R China
vision Transformers have shown promising performance in image restoration, which usually conduct window- or channel-based attention to avoid intensive computations. Although the promising performance has been achieved... 详细信息
来源: 评论
SoccerTrack: A Dataset and Tracking Algorithm for Soccer with Fish-eye and Drone Videos
SoccerTrack: A Dataset and Tracking Algorithm for Soccer wit...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Scott, Atom Uchida, Ikuma Onishi, Masaki Kameda, Yoshinari Fukui, Kazuhiro Fujii, Keisuke Univ Tsukuba Tsukuba Ibaraki Japan Natl Inst Adv Ind Sci & Technol Tsukuba Japan Nagoya Univ Nagoya Aichi Japan RIKEN JST PRESTO Tokyo Japan
Tracking devices that can track both players and balls are critical to the performance of sports teams. Recently, significant effort has been focused on building larger broadcast sports video datasets. However, broadc... 详细信息
来源: 评论
Improving Robustness of vision Transformers by Reducing Sensitivity to Patch Corruptions
Improving Robustness of Vision Transformers by Reducing Sens...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Guo, Yong Stutz, David Schiele, Bernt Saarland Informat Campus Max Planck Inst Informat Saarbrucken Germany
Despite their success, vision transformers still remain vulnerable to image corruptions, such as noise or blur. Indeed, we find that the vulnerability mainly stems from the unstable self-attention mechanism, which is ... 详细信息
来源: 评论
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Gradient-based Uncertainty Attribution for Explainable Bayes...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Hanjing Joshi, Dhiraj Wang, Shiqiang Ji, Qiang Rensselaer Polytech Inst Troy NY 12180 USA IBM Res Armonk NY USA
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the predicti... 详细信息
来源: 评论
Learning Expressive Prompting With Residuals for vision Transformers
Learning Expressive Prompting With Residuals for Vision Tran...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Das, Rajshekhar Dukler, Yonatan Ravichandran, Avinash Swarninathan, Ashwin Carnegie Mellon Univ Pittsburgh PA 15213 USA AWS AI Labs Shanghai Peoples R China
Prompt learning is an efficient approach to adapt transformers by inserting learnable set of parameters into the input and intermediate representations of a pre-trained model. In this work, we present Expressive Promp... 详细信息
来源: 评论
Contrastive Learning-based Robust Object Detection under Smoky Conditions
Contrastive Learning-based Robust Object Detection under Smo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wu, Wei Chang, Hao Zheng, Yonghua Li, Zhu Chen, Zhiwen Zhang, Ziheng Xidian Univ State Key Lab Integrated Serv Networks Xian Peoples R China Univ Missouri Dept Comp Sci & Elect Engn Kansas City MO 64110 USA
Object detection is to effectively find out interested targets in images and then accurately determine their categories and positions. Recently many excellent methods have been developed to provide powerful detection ... 详细信息
来源: 评论
MARRS: Modern Backbones Assisted Co-training for Rapid and Robust Semi-Supervised Domain Adaptation
MARRS: Modern Backbones Assisted Co-training for Rapid and R...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Jain, Saurabh Kumar Das, Sukhendu Indian Institute of Technology Visualization and Perception Lab Department of Computer Science Engineering Madras India
Semi-Supervised Domain Adaptation (SSDA) aims to develop domain invariant models from scarcely labeled target domain in addition to the fully labeled source domain. Current SSDA works are often applied in conjunction ... 详细信息
来源: 评论