咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是1-10 订阅
排序:
2007 ieee international symposium on approximate dynamic programming and reinforcement learning
Proceedings of the 2007 IEEE Symposium on Approximate Dynami...
收藏 引用
Proceedings of the 2007 ieee symposium on approximate dynamic programming and reinforcement learning, ADPRL 2007 2007年
作者: Liu, Derong Munos, Remi Si, Jennie Wunsch, II, Donald C.
No abstract available
来源: 评论
A reinforcement-learning, Optimal Approach to In Situ Power Hardware-in-the-Loop Interface Control for Testing Inverter-Based Resources: Theory and Application of the Adaptive dynamic programming Based on the Hybrid Iteration to Tackle Uncertain dynamics
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2025年 第6期72卷 5867-5883页
作者: Davari, Masoud Qasem, Omar Gao, Weinan Blaabjerg, Frede Kotsampopoulos, Panos C. Lauss, Georg Hatziargyriou, Nikos D. Georgia Southern Univ Allen E Paulson Coll Engn & Comp Dept Elect & Comp Engn Statesboro Campus Statesboro GA 30460 USA Amer Int Univ Sch Engn & Comp Elect & Comp Engn Dept Al Jahra Kuwait Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110004 Liaoning Peoples R China Aalborg Univ Dept AAU Energy DK-9220 Aalborg Denmark Natl Tech Univ Athens Sch Elect & Comp Engn Power Div Athens 15780 Greece Austrian Inst Technol AIT Dept Elect Energy Syst EES A-1210 Vienna Austria
Testing inverter-based resources (IBRs) is of utmost importance. This paper proposes a novel power hardware-in-the-loop (PHIL) interface control (PHIL-IC) employing a reinforcement-learning approach based on adaptive ... 详细信息
来源: 评论
Practical Task and Motion Planning for Robotic Food Preparation
Practical Task and Motion Planning for Robotic Food Preparat...
收藏 引用
2025 ieee/SICE international symposium on System Integration, SII 2025
作者: Siburian, Jeremy Beltran-Hernandez, Cristian C. Hamaya, Masashi Waseda University Tokyo169-8555 Japan OMRON SINIC X Corporation Tokyo113-0033 Japan
To fully integrate robots into household settings, they must be capable of autonomously planning and executing diverse tasks. However, task and motion planning for multistep manipulation tasks remains an open challeng... 详细信息
来源: 评论
Proceedings of the 2007 ieee symposium on approximate dynamic programming and reinforcement learning (ADPRL 2007)
Proceedings of the 2007 IEEE Symposium on Approximate Dynami...
收藏 引用
2007 ieee symposium on approximate dynamic programming and reinforcement learning, ADPRL 2007
The proceedings contain 49 papers. The topics discussed include: fitted Q iteration with CMACs;reinforcement-learning-based magneto-hydrodynamic control hypersonic flows;a novel fuzzy reinforcement learning approach i... 详细信息
来源: 评论
reinforcement learning by backpropagation through an LSTM model/critic
Reinforcement learning by backpropagation through an LSTM mo...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Bakker, Bram Univ Amsterdam Inst Informat Intelligent Syst Lab Amsterdam NL-1098 SJ Amsterdam Netherlands
This paper describes backpropagation through an LSTM recurrent neural network model/critic, for reinforcement learning tasks in partially observable domains. This combines the advantage of LSTM's strength at learn... 详细信息
来源: 评论
An approximate dynamic programming strategy for responsive traffic signal control
An approximate dynamic programming strategy for responsive t...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Cai, Chen Univ Coll London Ctr Transport Studies London WC1E 6BT England
This paper proposes an approximate dynamic programming strategy for responsive traffic signal control. It is the first attempt that optimizes signal control objective dynamically through adaptive approximation of valu... 详细信息
来源: 评论
Toward effective combination of off-line and on-line training in ADP framework
Toward effective combination of off-line and on-line trainin...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Prokhorov, Danil Toyota Technol Ctr Ann Arbor MI 48105 USA
We are interested in finding the most effective combination between off-line and on-line/real-time training in approximate dynamic programming. We introduce our approach of combining proven off-line methods of trainin... 详细信息
来源: 评论
Randomly sampling actions in dynamic programming
Randomly sampling actions in dynamic programming
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Atkeson, Christopher G. Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
We describe an approach towards reducing the curse of dimensionality for deterministic dynamic programming with continuous actions by randomly sampling actions while computing a steady state value function and policy.... 详细信息
来源: 评论
The knowledge gradient policy for offline learning with independent normal rewards
The knowledge gradient policy for offline learning with inde...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Frazier, Peter Powell, Warren Princeton Univ Dept Operat Res & Financial Engn Princeton NJ 08544 USA
We define a new type of policy, the knowledge gradient policy, in the context of an offline learning problem. We show how to compute the knowledge gradient policy efficiently and demonstrate through Monte Carlo simula... 详细信息
来源: 评论
Dual representations for dynamic programming and reinforcement learning
Dual representations for dynamic programming and reinforceme...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Wang, Tao Bowling, Michael Schuurmans, Dale Univ Alberta Dept Comp Sci Edmonton AB Canada
We investigate the dual approach to dynamic programming and reinforcement learning, based on maintaining an explicit representation of stationary distributions as opposed to value functions. A significant advantage of... 详细信息
来源: 评论