咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是101-110 订阅
排序:
Finite-Horizon Optimal Control Design for Uncertain Linear Discrete-time Systems
Finite-Horizon Optimal Control Design for Uncertain Linear D...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Zhao, Qiming Xu, Hao Jagannathan, S. Missouri Univ S&T Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, the finite-horizon optimal adaptive control design for linear discrete-time systems with unknown system dynamics by using adaptive dynamic programming (ADP) is presented. In the presence of full state f... 详细信息
来源: 评论
A reinforcement learning algorithm developed to model GenCo strategic bidding behavior in multidimensional and continuous state and action spaces
A reinforcement learning algorithm developed to model GenCo ...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lau, Alfred Yong Fu Srinivasan, Dipti Reindl, Thomas Natl Univ Singapore Dept Elect Comp Engn 4 Engn Dr 3 Singapore 117576 Singapore Natl Univ Singapore Solar Energy Res Inst Singapore 117574 Singapore
The electricity market have provided a complex economic environment, and consequently have increased the requirement for advancement of learning methods. In the agent-based modeling and simulation framework of this ec... 详细信息
来源: 评论
Optimal control for a class of nonlinear systems with state delay based on Adaptive dynamic programming with ε-error bound
Optimal control for a class of nonlinear systems with state ...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Cao, Nuyun Lin, Yuzhang Guangxi Univ Sch Elect Engn Nanning 530004 Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
In this paper, a finite-horizon epsilon-optimal control for a class of nonlinear systems with state delay is proposed by Adaptive dynamic programming (ADP) algorithm. First of all, the performance index function is de... 详细信息
来源: 评论
Bias-Corrected Q-learning to Control Max-Operator Bias in Q-learning
Bias-Corrected Q-Learning to Control Max-Operator Bias in Q-...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lee, Donghun Defourny, Boris Powell, Warren B. Princeton Univ Dept Comp Sci Princeton NJ 08540 USA Princeton Univ Dept Operat Res & Financial Engn Princeton NJ 08540 USA
We identify a class of stochastic control problems with highly random rewards and high discount factor which induce high levels of statistical error in the estimated action-value function. This produces significant le... 详细信息
来源: 评论
Finite Horizon Stochastic Optimal Control of Uncertain Linear Networked Control System
Finite Horizon Stochastic Optimal Control of Uncertain Linea...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Xu, Hao Jagannathan, S. Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, finite horizon stochastic optimal control issue has been studied for linear networked control system (LNCS) in the presence of network imperfections such as network-induced delays and packet losses by u... 详细信息
来源: 评论
Scalarized Multi-Objective reinforcement learning: Novel Design Techniques
Scalarized Multi-Objective Reinforcement Learning: Novel Des...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Van Moffaert, Kristof Drugan, Madalina M. Nowe, Ann Vrije Univ Brussel Dept Comp Sci B-1050 Brussels Belgium
In multi-objective problems, it is key to find compromising solutions that balance different objectives. The linear scalarization function is often utilized to translate the multi-objective nature of a problem into a ... 详细信息
来源: 评论
A Study on the Efficiency of learning a Robot Controller in Various Environments
A Study on the Efficiency of Learning a Robot Controller in ...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Soga, Sachiko Kobayashi, Ichiro Ochanomizu Univ Grad Sch Humanities & Sci Bunkyo Ku Tokyo 1128610 Japan
In the case that a robot controller is trained by means of evolutionary computation, the robot will be able to behave sufficiently in the environment where the robot has been trained. However, if the robot is put in a... 详细信息
来源: 评论
reinforcement learning in the Game of Othello: learning Against a Fixed Opponent and learning from Self-Play
Reinforcement Learning in the Game of Othello: Learning Agai...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: van der Ree, Michiel Wiering, Marco Univ Groningen Inst Artificial Intelligence & Cognit Engn Fac Math & Nat Sci NL-9700 AB Groningen Netherlands
This paper compares three strategies in using reinforcement learning algorithms to let an artificial agent learn to play the game of Othello. The three strategies that are compared are: learning by self-play, learning... 详细信息
来源: 评论
A Combined Hierarchical reinforcement learning Based Approach For Multi-robot Cooperative Target Searching in Complex Unknown Environments
A Combined Hierarchical Reinforcement Learning Based Approac...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Cai, Yifan Yang, Simon X. Xu, Xin Univ Guelph Sch Engn Guelph ON N1G 2W1 Canada Natl Univ Def Technol Coll Mechatron & Automat Changsha 410073 Hunan Peoples R China
Effective cooperation of multi-robots in unknown environments is essential in many robotic applications, such as environment exploration and target searching. In this paper, a combined hierarchical reinforcement learn... 详细信息
来源: 评论
Optimistic Planning for Continuous-Action Deterministic Systems
Optimistic Planning for Continuous-Action Deterministic Syst...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Busoniu, Lucian Daniels, Alexander Munos, Remi Babuska, Robert Univ Lorraine CRAN UMR 7039 Nancy France CNRS CRAN UMR 7039 Nancy France Delft Univ Technol DCSC Delft Netherlands INRIA Lille Nord Europe Team SequeL Lille France
We consider the class of online planning algorithms for optimal control, which compared to dynamic programming are relatively unaffected by large state dimensionality. We introduce a novel planning algorithm called SO... 详细信息
来源: 评论