咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是111-120 订阅
排序:
learning Intrusion Prevention Policies through Optimal Stopping  17
Learning Intrusion Prevention Policies through Optimal Stopp...
收藏 引用
17th international Conference on Network and Service Management (CNSM) - Smart Management for Future Networks and Services
作者: Hammar, Kim Stadler, Rolf KTH Royal Inst Technol Div Network & Syst Engn Stockholm Sweden KTH Ctr Cyber Def & Informat Secur Stockholm Sweden
We study automated intrusion prevention using reinforcement learning. In a novel approach, we formulate the problem of intrusion prevention as an optimal stopping problem. This formulation allows us insight into the s... 详细信息
来源: 评论
Relations between Model Predictive Control and reinforcement learning
Relations between Model Predictive Control and Reinforcement...
收藏 引用
20th World Congress of the international-Federation-of-Automatic-Control (IFAC)
作者: Goerges, Daniel Univ Kaiserslautern Electromobil Erwin Schrodinger Str 12 D-67663 Kaiserslautern Germany
In this paper relations between model predictive control and reinforcement learning are studied for discrete-time linear time-invariant systems with state and input constraints and a quadratic value function. The prin... 详细信息
来源: 评论
Guaranteed cost neural tracking control for a class of uncertain nonlinear systems using adaptive dynamic programming
收藏 引用
NEUROCOMPUTING 2016年 198卷 80-90页
作者: Yang, Xiong Liu, Derong Wei, Qinglai Wang, Ding Chinese Acad Sci Complex Syst Inst Automat State Key Lab Management & Control Beijing 100190 Peoples R China Univ Sci & Technol Sch Automat & Elect Engn Beijing 100083 Peoples R China
This paper presents an adaptive dynamic programming-based guaranteed cost neural tracking control algorithm for a class of continuous-time matched uncertain nonlinear systems. By introducing an augmented system and em... 详细信息
来源: 评论
Decision theory on dynamic domains: Nabla derivatives and the hamilton-jacobi-bellman equation
Decision theory on dynamic domains: Nabla derivatives and th...
收藏 引用
2008 ieee international Conference on Systems, Man and Cybernetics, SMC 2008
作者: Seiffertt, John Wunsch II, Donald C. Sanyal, Suman Department of Electrical and Computer Engineering Missouri University of Science and Technology Rolla MO United States Department of Mathematics and Computer Science Clarkson University Potsdam NY United States
The time scales calculus, which includes the study of the nabla derivatives, is an emerging key topic due to many multidisciplinary applications. We extend this calculus to approximate dynamic programming. In particul... 详细信息
来源: 评论
A non-parametric approach to approximate dynamic programming
A non-parametric approach to approximate dynamic programming
收藏 引用
10th international Conference on Machine learning and Applications, ICMLA 2011
作者: Glaude, Hadrien Akrimi, Fadi Geist, Matthieu Pietquin, Olivier 57070 Metz France 2 rue Edouard Belin 57070 Metz France
approximate dynamic programming (ADP) is a machine learning method aiming at learning an optimal control policy for a dynamic and stochastic system from a logged set of observed interactions between the system and one... 详细信息
来源: 评论
Advances in reinforcement learning and their implications for intelligent control
Advances in reinforcement learning and their implications fo...
收藏 引用
Proceedings of the 5th ieee international symposium on Intelligent Control 1990
作者: Whitehead, Steven D. Sutton, Richard S. Ballard, Dana H. Dept of Comput Sci Univ of Rochester NY USA
The focus of this work is on control architectures that are based on reinforcement learning. A number of recent advances that have contributed to the viability of reinforcement learning approaches to intelligent contr... 详细信息
来源: 评论
Optimal Control for a Class of Unknown Nonlinear Systems via the Iterative GDHP Algorithm
Optimal Control for a Class of Unknown Nonlinear Systems via...
收藏 引用
8th international symposium on Neural Networks
作者: Wang, Ding Liu, Derong Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China
Using the neural-network-based iterative adaptive dynamic programming (ADP) algorithm, an optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is prop... 详细信息
来源: 评论
Policy Gradient Approaches for Multi-Objective Sequential Decision Making: A Comparison
Policy Gradient Approaches for Multi-Objective Sequential De...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Parisi, Simone Pirotta, Matteo Smacchia, Nicola Bascetta, Luca Restelli, Marcello Politecn Milan Dept Elect Informat & Bioengn Piazza Leonardo da Vinci 32 I-20133 Milan Italy
This paper investigates the use of policy gradient techniques to approximate the Pareto frontier in Multi-Objective Markov Decision Processes (MOMDPs). Despite the popularity of policy-gradient algorithms and the fact... 详细信息
来源: 评论
learning IN CONSTRAINED STOCHASTIC dynamic POTENTIAL GAMES  41
LEARNING IN CONSTRAINED STOCHASTIC DYNAMIC POTENTIAL GAMES
收藏 引用
41st ieee international Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Macua, Sergio Valcarcel Zazo, Santiago Zazo, Javier Univ Politecn Madrid E-28040 Madrid Spain
We extend earlier works on continuous potential games to the most general case: stochastic time varying environment, stochastic rewards, non-reduced form and constrained state-action sets. We provide conditions for a ... 详细信息
来源: 评论
Discrete-Time Optimal Control Scheme Based on Q-learning Algorithm  7
Discrete-Time Optimal Control Scheme Based on <i>Q</i>-Learn...
收藏 引用
7th international Conference on Intelligent Control and Information Processing (ICICIP)
作者: Wei, Qinglai Liu, Derong Song, Ruizhuo Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China
This paper is concerned with optimal control problems of discrete-time nonlinear systems via a novel Q-learning algorithm. In the newly developed Q-learning algorithm, the iterative Q function in each iteration is req... 详细信息
来源: 评论