咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是151-160 订阅
排序:
Convergence of Model-Based Temporal Difference learning for Control
Convergence of Model-Based Temporal Difference Learning for ...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Hado van Hasselt Marco A. Wiering Department of Information and Computing Sciences University of Utrecht Utrecht Netherlands
A theoretical analysis of model-based temporal difference learning for control is given, leading to a proof of convergence. This work differs from earlier work on the convergence of temporal difference learning by pro... 详细信息
来源: 评论
The Knowledge Gradient Policy for Offline learning with Independent Normal Rewards
The Knowledge Gradient Policy for Offline Learning with Inde...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Peter Frazier Warren Powell Department of Operations Research and Financial Engineering Princeton University Engineering Princeton NJ USA
We define a new type of policy, the knowledge gradient policy, in the context of an offline learning problem. We show how to compute the knowledge gradient policy efficiently and demonstrate through Monte Carlo simula... 详细信息
来源: 评论
Toward effective combination of off-line and on-line training in ADP framework
Toward effective combination of off-line and on-line trainin...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Danil Prokhorov Toyota Technical Center Ann Arbor MI USA
We are interested in finding the most effective combination between off-line and on-line/real-time training in approximate dynamic programming. We introduce our approach of combining proven off-line methods of trainin... 详细信息
来源: 评论
reinforcement learning of LQR control policy by a double inverted-pendulum biomechanical model
Reinforcement learning of LQR control policy by a double inv...
收藏 引用
2023 ieee international Conference on Industrial Technology, ICIT 2023
作者: Iqbal, Kamran Haras, Muhammad University of Arkansas at Little Rock Little RockAR72204 United States
Optimal LQR feedback gains can be learned using reinforcement learning (RL) framework for systems with unknown dynamics using policy iteration methods. However, policy iteration in the case of inherently unstable syst... 详细信息
来源: 评论
Chic: Experience-driven Scheduling in Machine learning Clusters  19
Chic: Experience-driven Scheduling in Machine Learning Clust...
收藏 引用
ieee/ACM international symposium on Quality of Service (IWQoS)
作者: Gong, Yifan Li, Baochun Liang, Ben Zhan, Zheng Univ Toronto Dept Elect & Comp Engn Toronto ON Canada Syracuse Univ Coll Engn & Comp Sci Syracuse NY 13244 USA
Large-scale machine learning (ML) models are routinely trained in a distributed fashion, due to their increasing complexity and data sizes. In a shared cluster handling multiple distributed learning workloads with a p... 详细信息
来源: 评论
A hierarchical learning control framework for tracking tasks, based on model-free principles  23
A hierarchical learning control framework for tracking tasks...
收藏 引用
23rd international Conference on System Theory, Control and Computing (ICSTCC)
作者: Radac, Mircea-Bogdan Negru, Vlad Precup, Radu-Emil Politehn Univ Timisoara PUT AAI Dept Timisoara Romania PUT AAI Dept Timisoara Romania
A hierarchical tracking learning framework is proposed in this work, by which, an optimally learned tracking behavior is extrapolated to new unseen trajectories without the need for relearning. This intelligent behavi... 详细信息
来源: 评论
Proceedings of the 2006 ieee international symposium on Intelligent Control, ISIC 2006
Proceedings of the 2006 IEEE International Symposium on Inte...
收藏 引用
2006 ieee international symposium on Intelligent Control, ISIC 2006
The proceedings contain 94 papers. The topics discussed include: neural adaptive control of dynamic sandwich systems with hysteresis;radial basis function based iterative learning control for stochastic distribution s...
来源: 评论
The Research of Quadrotor Flight Control Based on reinforcement learning and ADP  8
The Research of Quadrotor Flight Control Based on Reinforcem...
收藏 引用
8th Annual international Conference on Network and Information Systems for Computers, ICNISC 2022
作者: Li, Xueyuan Xie, Wentao Zhan, Wentao Xi'an Aeronautics Computing Technique Research Institute Avic Xi'an China
This paper studies the application of Lookup-Table reinforcement learning method into the continuous state space control of quadrotor simulator and designs a attitude controller for the quadrotor simulator based on Q-... 详细信息
来源: 评论
Optimization Control of Rectifier in HVDC System with ADHDP
Optimization Control of Rectifier in HVDC System with ADHDP
收藏 引用
8th international symposium on Neural Networks
作者: Song, Chunning Zhou, Xiaohua Lin, Xiaofeng Song, Shaojian Guangxi Univ Coll Elect Engn Guangxi Nanning 530004 Peoples R China
A novel nonlinear optimal controller for a rectifier in HVDC transmission system, using artificial neural networks, is presented in this paper. The action dependent heuristic dynamic programming(ADHDP), a member of th... 详细信息
来源: 评论
Randomly Sampling Actions In dynamic programming
Randomly Sampling Actions In Dynamic Programming
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Christopher G. Atkeson Robotics Institute Carnegie Mellon University Pittsburgh PA USA
We describe an approach towards reducing the curse of dimensionality for deterministic dynamic programming with continuous actions by randomly sampling actions while computing a steady state value function and policy.... 详细信息
来源: 评论