咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是161-170 订阅
排序:
Editorial Special Issue on Adaptive dynamic programming and reinforcement learning
收藏 引用
ieee Transactions on Systems, Man, and Cybernetics: Systems 2020年 第11期50卷 3944-3947页
作者: Liu, Derong Lewis, Frank L. Wei, Qinglai School of Automation Guangdong University of Technology Guangzhou510006 China Uta Research Institute University of Texas at Arlington Fort WorthTX76118 United States State Key Laboratory of Management and Control for Complex Systems Istitute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
The past decade has witnessed a surge in research activities related to adaptive dynamic programming (ADP) and reinforcement learning (RL), particularly for control applications. Several books [item 1)–5) in the Appe... 详细信息
来源: 评论
Individualization of pharmacological anemia management using reinforcement learning
Individualization of pharmacological anemia management using...
收藏 引用
international Joint Conference on Neural Networks
作者: Gaweda, AE Muezzinoglu, MK Aronoff, GR Jacobs, AA Zurada, JM Brier, ME Univ Louisville Dept Med Louisville KY 40292 USA Univ Louisville Dept Elect & Comp Engn Louisville KY 40292 USA Dept Vet Affairs Louisville KY 40202 USA
Effective management of anemia due to renal failure poses many challenges to physicians. Individual response to treatment varies across patient populations and, due to the prolonged character of the therapy, changes o... 详细信息
来源: 评论
Accelerating Critic learning in approximate dynamic programming Via Value Templates and Perceptual learning
Accelerating Critic Learning in Approximate Dynamic Programm...
收藏 引用
international Joint Conference on Neural Networks 2003
作者: Shannon, Thaddeus T. Santiago, Roberto A. Lendaris, George G. NW Compl. Intelligence Laboratory Systems Science Ph.D. Program Portland State University Portland OR United States
The concept of value templates and perceptual learning are introduced as refinements to the reinforcement learning (RL) paradigm. We demonstrate a method for accelerating Dual Heuristic programming (DHP) critic traini... 详细信息
来源: 评论
reinforcement learning in Continuous Action Spaces
Reinforcement Learning in Continuous Action Spaces
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Hado van Hasselt Marco A. Wiering Department of Information and Computing Sciences University of Utrecht Utrecht Netherlands
Quite some research has been done on reinforcement learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new ... 详细信息
来源: 评论
Particle Swarn Optimized Adaptive dynamic programming
Particle Swarn Optimized Adaptive Dynamic Programming
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Dongbin Zhao Jianqiang Yi Derong Liu Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy and Sciences Beijing China Department of Electrical and Computer Engineering University of Illinois Chicago Chicago IL USA
Particle swarm optimization is used for the training of the action network and critic network of the adaptive dynamic programming approach. The typical structures of the adaptive dynamic programming and particle swarm... 详细信息
来源: 评论
Hamiltonian-Driven Adaptive dynamic programming Based on Extreme learning Machine  14th
收藏 引用
14th international symposium on Neural Networks (ISNN)
作者: Yang, Yongliang Wunsch, Donald Guo, Zhishan Yin, Yixin Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA Missouri Univ Sci & Technol Dept Comp Sci Rolla MO 65409 USA
In this paper, a novel frame work of reinforcement learning for continuous time dynamical system is presented based on the Hamiltonian functional and extreme learning machine. The idea of solution search in the optimi... 详细信息
来源: 评论
Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence Proof
Discrete-time nonlinear HJB solution using Approximate dynam...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Asma Al-Tamimi Frank Lewis Automation & Robotics Research Institute University of Texas Arlington Fort Worth TX USA
In this paper, a greedy iteration scheme based on approximate dynamic programming (ADP), namely heuristic dynamic programming (HDP), is used to solve for the value function of the Hamilton Jacobi Bellman equation (HJB... 详细信息
来源: 评论
The Effect of Bootstrapping in Multi-Automata reinforcement learning
The Effect of Bootstrapping in Multi-Automata Reinforcement ...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Maarten Peeters Katja Verbeeck Ann Nowe Computational Modeling Laboratory Vrije Universiteit Brussel Brussels Belgium
learning automata are shown to be an excellent tool for creating learning multi-agent systems. Most algorithms used in current automata research expect the environment to end in an explicit end-stage. In this end-stag... 详细信息
来源: 评论
Knowledge Transfer Using Local Features
Knowledge Transfer Using Local Features
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Martin Stolle Christopher G. Atkeson Robotics Institute Carnegie Mellon University Pittsburgh PA USA
We present a method for reducing the effort required to compute policies for tasks based on solutions to previously solved tasks. The key idea is to use a learned intermediate policy based on local features to create ... 详细信息
来源: 评论
Dual Representations for dynamic programming and reinforcement learning
Dual Representations for Dynamic Programming and Reinforceme...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Tao Wang Michael Bowling Dale Schuurmans Department of Computing Science University of Alberta Edmonton Canada
We investigate the dual approach to dynamic programming and reinforcement learning, based on maintaining an explicit representation of stationary distributions as opposed to value functions. A significant advantage of... 详细信息
来源: 评论