咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是191-200 订阅
排序:
Sparse Temporal Difference learning Using LASSO
Sparse Temporal Difference Learning Using LASSO
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Manuel Loth Manuel Davy Philippe Preux SequeL INRIA-Futurs LIFL CNRS University of Lille (USTL) France SequeL INRIA-Futurs Lagis CNRS Ecole Centrale de Lille France SequeL INRIA-Futurs LIFL CNRS University of Lille (USTL) France
We consider the problem of on-line value function estimation in reinforcement learning. We concentrate on the function approximator to use. To try to break the curse of dimensionality, we focus on non parametric funct... 详细信息
来源: 评论
Distributed Deep reinforcement learning for Fighting Forest Fires with a Network of Aerial Robots
Distributed Deep Reinforcement Learning for Fighting Forest ...
收藏 引用
25th ieee/RSJ international Conference on Intelligent Robots and Systems (IROS)
作者: Haksar, Ravi N. Schwager, Mac Stanford Univ Dept Mech Engn Stanford CA 94305 USA Stanford Univ Dept Aeronaut & Astronaut Stanford CA 94305 USA
This paper proposes a distributed deep reinforcement learning (RL) based strategy for a team of Unmanned Aerial Vehicles (UAVs) to autonomously fight forest fires. We first model the forest fire as a Markov decision p... 详细信息
来源: 评论
Using ADP to Understand and Replicate Brain Intelligence: the Next Level Design
Using ADP to Understand and Replicate Brain Intelligence: th...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Paul J. Werbos National Science Foundation Arlington VA USA
Since the 1960's the author proposed that we could understand and replicate the highest level of intelligence seen in the brain, by building ever more capable and general systems for adaptive dynamic programming (... 详细信息
来源: 评论
Opposition-Based reinforcement learning in the Management of Water Resources
Opposition-Based Reinforcement Learning in the Management of...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: M. Mahootchi H. R. Tizhoosh K. Ponnambalam Systems Design Engineering University of Waterloo Waterloo ONT Canada
Opposition-based learning (OBL) is a new scheme in machine intelligence. In this paper, an OBL version Q-learning which exploits opposite quantities to accelerate the learning is used for management of single reservoi... 详细信息
来源: 评论
A Novel Fuzzy reinforcement learning Approach in Two-Level Intelligent Control of 3-DOF Robot Manipulators
A Novel Fuzzy Reinforcement Learning Approach in Two-Level I...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Nasser Sadati Mohammad Mollaie Emamzadeh Electrical Engineering Department Sharif University of Technology Tehran Tehran Iran Electrical Engineering Department Sharif University of Technology Tehran Iran
In this paper, a fuzzy coordination method based on interaction prediction principle (IPP) and reinforcement learning is presented for the optimal control of robot manipulators with three degrees-of-freedom. For this ... 详细信息
来源: 评论
Short-term Stock Market Timing Prediction under reinforcement learning Schemes
Short-term Stock Market Timing Prediction under Reinforcemen...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Hailin Li Cihan H. Dagli David Enke Department of Engineering Management and Systems Engineering University of Missouri Rolla Rolla MO USA
There are fundamental difficulties when only using a supervised learning philosophy to predict financial stock short-term movements. We present a reinforcement-oriented forecasting framework in which the solution is c... 详细信息
来源: 评论
Using Reward-weighted Regression for reinforcement learning of Task Space Control
Using Reward-weighted Regression for Reinforcement Learning ...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Jan Peters Stefan Schaal University of Southern California Los Angeles CA USA
Many robot control problems of practical importance, including task or operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or rein... 详细信息
来源: 评论
Discrete-Time Adaptive dynamic programming using Wavelet Basis Function Neural Networks
Discrete-Time Adaptive Dynamic Programming using Wavelet Bas...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Ning Jin Derong Liu Ting Huang Zhongyu Pang Department of Electrical and Computer Engineering University of Illinois Chicago IL USA
dynamic programming for discrete time systems is difficult due to the "curse of dimensionality": one has to find a series of control actions that must be taken in sequence, hoping that this sequence will lea... 详细信息
来源: 评论
approximate Optimal Control-Based Neurocontroller with a State Observation System for Seedlings Growth in Greenhouse
Approximate Optimal Control-Based Neurocontroller with a Sta...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: H. D. Patino J. A. Pucheta C. Schugurensky R. Fullana B. Kuchen Universidad Nacional de San Juan San Juan Argentina
In this paper, an approximate optimal control-based neurocontroller for guiding the seedlings growth in greenhouse is presented. The main goal of this approach is to obtain a close-loop operation with a state neurocon... 详细信息
来源: 评论
Leader-Follower semi-Markov Decision Problems: Theoretical Framework and approximate Solution
Leader-Follower semi-Markov Decision Problems: Theoretical F...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Kurian Tharakunnel Siddhartha Bhattacharyya Department of Information and Decision Sciences University of Illinois Chicago Chicago IL USA
Leader-follower problems are hierarchical decision problems in which a leader uses incentives to induce certain desired behavior among a set of self-interested followers. dynamic leader-follower problems extend this s... 详细信息
来源: 评论