咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是211-220 订阅
排序:
A learning Approach to Multi-robot Task Allocation with Priority Constraints and Uncertainty
A Learning Approach to Multi-robot Task Allocation with Prio...
收藏 引用
2022 ieee international Conference on Industrial Technology, ICIT 2022
作者: Deng, Fuqin Huang, Huanzhao Fu, Lanhui Yue, Hongwei Zhang, Jianmin Wu, Zexiao Lam, Tin Lun Wuyi University School of Intelligent Manufacturing Guangdong Jiangmen529020 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518000 China The 3irobotix Co. Ltd Guangdong Shenzhen518000 China Guangdong University of Education School of Physics and Information Engineering Guangdong Guangzhou510303 China The Chinese University of HongKong School of Science and Engineering Guangdong Shenzhen518000 China
Multi-robot task allocation has an important impact on the efficiency of multi-robot collaboration. For single-shot allocation without complicated constraints, some exact algorithms and heuristic algorithms can find t... 详细信息
来源: 评论
ATM: approximate Task Memoization in the Runtime System  31
ATM: Approximate Task Memoization in the Runtime System
收藏 引用
31st ieee international Parallel and Distributed Processing symposium (IPDPS)
作者: Brumar, Iulian Casas, Marc Moreto, Miguel Valero, Mateo Sohi, Gurindar S. BSC Barcelona Spain Univ Wisconsin Madison WI 53706 USA
Redundant computations appear during the execution of real programs. Multiple factors contribute to these unnecessary computations, such as repetitive inputs and patterns, calling functions with the same parameters or... 详细信息
来源: 评论
A reinforcement learning Solution to the Nonlinear Spacecraft Pursuit-Evasion Game Problem  14
A Reinforcement Learning Solution to the Nonlinear Spacecraf...
收藏 引用
14th ieee international Conference on Cyber Technology in Automation, Control, and Intelligent Systems, CYBER 2024
作者: Huang, Haoqi Ran, Guangtao Lyu, Yueyong Ma, Guangfu Harbin Institute of Technology Department of Control Science and Engineering Harbin150001 China
The pursuit-evasion game of non-cooperative spacecrafts under nonlinear dynamics is currently a hot topic in orbital gaming. We describe the above pursuit-evasion game model using differential game theory, transformin... 详细信息
来源: 评论
Online reinforcement learning Neural Network Controller Design for Nanomanipulation
Online Reinforcement Learning Neural Network Controller Desi...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Qinmin Yang S. Jagannathan Department of Electrical & Computer Engineering University of Missouri Rolla MO USA
In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation.... 详细信息
来源: 评论
Feature discovery in approximate dynamic programming
Feature discovery in approximate dynamic programming
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Philippe Preux Sertan Girgin Manuel Loth Laboratoire dInformatique Fondamentale de Lille (Computer Science Laboratory associated to the CNRS) and the INRIAINRIA Université de Lille France
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the ... 详细信息
来源: 评论
Evolutionary Adaptive dynamic programming Algorithm for Converter Gas Scheduling of Steel Industry  6
Evolutionary Adaptive Dynamic Programming Algorithm for Conv...
收藏 引用
6th international symposium on Advanced Control of Industrial Processes (AdCONIP)
作者: Wang, Tianyu Wang, Linqing Zhao, Jun Wang, Wei Liu, Ying Dalian Univ Technol Sch Control Sci & Engn Dalian 116024 Peoples R China
It is significant to perform an effective scheduling of byproduct gas system in steel industry for reducing cost and protecting environment. The existing studies largely focused on extracting specific knowledge from h... 详细信息
来源: 评论
2011 ieee international symposium on Intelligent Control, ISIC 2011
2011 IEEE International Symposium on Intelligent Control, IS...
收藏 引用
2011 ieee international symposium on Intelligent Control, ISIC 2011
The proceedings contain 39 papers. The topics discussed include: optimal network localization by particle swarm optimization;a framework for adaptive tuning of distributed model predictive controllers by Lagrange mult...
来源: 评论
Continuous-Time ADP for Linear Systems with Partially Unknown dynamics
Continuous-Time ADP for Linear Systems with Partially Unknow...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Draguna Vrabie Murad Abu-Khalaf Frank L. Lewis Youyi Wang Automation and Robotics Research Institute University of Texas Arlington Fort Worth TX USA School of Electrical and Electronic Engineering Nanyang Technological University Singapore
approximate dynamic programming has been formulated and applied mainly to discrete-time systems. Expressing the ADP concept for continuous-time systems raises difficult issues related to sampling time and system model... 详细信息
来源: 评论
A Scalable Model-Free Recurrent Neural Network Framework for Solving POMDPs
A Scalable Model-Free Recurrent Neural Network Framework for...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Zhenzhen Liu Itamar Elhanany Department of Electrical & Computer Engineering University of Tennessee Knoxville TN USA
This paper presents a framework for obtaining an optimal policy in model-free partially observable Markov decision problems (POMDPs) using a recurrent neural network (RNN), A Q-function approximation approach is taken... 详细信息
来源: 评论
A convergent recursive least squares approximate policy iteration algorithm for multi-dimensional Markov decision process with continuous state and action spaces
A convergent recursive least squares approximate policy iter...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Jun Ma Warren B. Powell Department of Operations Research and Financial Engineering Princeton University Princeton NJ USA
In this paper, we present a recursive least squares approximate policy iteration (RLSAPI) algorithm for infinite-horizon multi-dimensional Markov decision process in continuous state and action spaces. Under certain p... 详细信息
来源: 评论