咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是221-230 订阅
排序:
approximate reinforcement learning: An overview
Approximate reinforcement learning: An overview
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Lucian Buşoniu Damien Ernst Bart De Schutter Robert Babuška Delft Center of Systems & Control Delft University of Technnology Netherlands FRS-FNRS Systems and Modeling Unit University of Liège Belgium
reinforcement learning (RL) allows agents to learn how to optimally interact with complex environments. Fueled by recent advances in approximation-based algorithms, RL has obtained impressive successes in robotics, ar... 详细信息
来源: 评论
Adaptive sample collection using active learning for kernel-based approximate policy iteration
Adaptive sample collection using active learning for kernel-...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Chunming Liu Xin Xu Haiyun Hu Bin Dai College of Mechatronics and Automation National University of Defense Technology Changsha China
approximate policy iteration (API) has been shown to be a class of reinforcement learning methods with stability and sample efficiency. However, sample collection is still an open problem which is critical to the perf... 详细信息
来源: 评论
A novel approach for constructing basis functions in approximate dynamic programming for feedback control
A novel approach for constructing basis functions in approxi...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Jian Wang Zhenhua Huang Xin Xu College of Mechatronics and Automation National University of Defense Tech Changsha P. R. China
This paper presents a novel approach for constructing basis functions in approximate dynamic programming (ADP) through the locally linear embedding (LLE) process. It considers the experience (sample) data as a high-di... 详细信息
来源: 评论
An adaptive dynamic programming algorithm to solve optimal control of uncertain nonlinear systems
An adaptive dynamic programming algorithm to solve optimal c...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Xiaohong Cui Yanhong Luo Huaguang Zhang School of Information Science and Engineering Northeastern University Shenyang Liaoning China
In this paper, an approximate optimal control method based on adaptive dynamic programming(ADP) is discussed for completely unknown nonlinear system. An online critic-action-identifier algorithm is developed using neu... 详细信息
来源: 评论
Opposition-Based Q(λ) with Non-Markovian Update
Opposition-Based Q(λ) with Non-Markovian Update
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Maryam Shokri Hamid R. Tizhoosh Mohamed S. Kamel Pattern Analysis and Machine Intelligence Laboratory Department of Systems Design Engineering University of Waterloo ONT Canada Department of Electrical and Computer Engineering University of Waterloo ONT Canada
The OQ(λ) algorithm benefits from an extension of eligibility traces introduced as opposition trace. This new technique is a combination of the idea of opposition and eligibility traces to deal with large state space... 详细信息
来源: 评论
Automatically customizing a powered knee prosthesis with human in the loop using adaptive dynamic programming
Automatically customizing a powered knee prosthesis with hum...
收藏 引用
2017 international symposium on Wearable Robotics and Rehabilitation, WeRob 2017
作者: Wen, Yue Brandt, Andrea Si, Jennie Huang, He Helen NCSU UNC Department of Biomedical Engineering NC State University RaleighNC27695-7115 United States University of North Carolina Chapel HillNC27599 United States Department of Electrical Computer and Energy Engineering Arizona State University TempeAZ85281 United States
In this study, we validated a human-in-the-loop auto-tuner using machine learning to automatically customize powered knee prosthesis control parameters for an amputee subject in real time. The experimental powered kne... 详细信息
来源: 评论
Hybrid Ant Colony Optimization Using Memetic Algorithm for Traveling Salesman Problem
Hybrid Ant Colony Optimization Using Memetic Algorithm for T...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Haibin Duan Xiufen Yu School of Automation Science and Electrical Engineering Beihang University Beijing China Center for Space Science and Applied Research Chinese Academy and Sciences Beijing China
Ant colony optimization was originally presented under the inspiration during collective behavior study results on real ant system, and it has strong robustness and easy to combine with other methods in optimization. ... 详细信息
来源: 评论
A Combined Policy Gradient and Q-learning Method for Data-driven Optimal Control Problems  9
A Combined Policy Gradient and Q-learning Method for Data-dr...
收藏 引用
9th international Conference on Information Science and Technology (ICIST)
作者: Lin, Mingduo Liu, Derong Zhao, Bo Dai, Qionghai Dong, Yi Guangdong Univ Technol Sch Automat Guangzhou Peoples R China Beijing Normal Univ Sch Syst Sci Beijing Peoples R China Tsinghua Univ Dept Automat Beijing Peoples R China Beijing Inst Technol Sch Opt & Photon Beijing Peoples R China
This paper focuses on the data-driven controller design for optimal control problems of nonlinear nonaffine discrete-time systems. A novel policy gradient and Q-learning (PGQL) adaptive algorithm which learns the opti... 详细信息
来源: 评论
Resource Provisioning in Fog Computing through Deep reinforcement learning  17
Resource Provisioning in Fog Computing through Deep Reinforc...
收藏 引用
17th IFIP/ieee international symposium on Integrated Network Management, IM 2021
作者: Santos, Jose Wauters, Tim Volckaert, Bruno Turck, Filip De Ghent University - Imec IDLab Department of Information Technology Technologiepark-Zwijnaarde 126 Gent9052 Belgium
The massive growth of connected devices has made traditional cloud systems inadequate to sustain the scalability, mobility, and heterogeneous nature of the Internet of Things (oT). Distributed clouds have become a pot... 详细信息
来源: 评论
A unified framework for temporal difference methods
A unified framework for temporal difference methods
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Dimitri P. Bertsekas Laboratory of Information and Decision Systems (LIDS) Massachusetts Institute of Technology MA USA
We propose a unified framework for a broad class of methods to solve projected equations that approximate the solution of a high-dimensional fixed point problem within a subspace S spanned by a small number of basis f... 详细信息
来源: 评论