咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是251-260 订阅
排序:
An Online Model-Free reinforcement learning Approach for 6-DOF Robot Manipulators
An Online Model-Free Reinforcement Learning Approach for 6-D...
收藏 引用
2023 ieee international symposium on Robotic and Sensors Environments, ROSE 2023
作者: Hosny, Zeyad Nassar, Abdullah Aboelyazeed, Ahmed Mohamed, Mahmoud Abouheaf, Mohammed Gueaieb, Wail University of Ottawa School of Electrical Engineering and Computer Science OttawaONK1N6N5 Canada Bowling Green State University Robotics Engineering Bowling GreenOH43402 United States
Controlling 6 Degrees-of-Freedom (DoF) robotic manipulators in an online, model-free manner poses significant challenges due to their complex coupling, non-linearities, and the need to account for unmodeled dynamics. ... 详细信息
来源: 评论
Higher-level application of Adaptive dynamic programming/reinforcement learning - a next phase for controls and system identification?
Higher-level application of Adaptive Dynamic Programming/Rei...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: George G. Lendaris Systems Science Graduate Program Portland State University Portland OR USA
In previous work it was shown that Adaptive-Critic-type approximate dynamic programming could be applied in a “higher-level” way to create autonomous agents capable of using experience to discern context and select ... 详细信息
来源: 评论
approximate dynamic programming for stochastic systems with additive and multiplicative noise
Approximate dynamic programming for stochastic systems with ...
收藏 引用
ieee international symposium on Intelligent Control (ISIC)
作者: Yu Jiang Zhong-Ping Jiang Department of Electrical and Computer Engineering Polytechnic Institute of New York University Brooklyn NY USA College of Engineering Beijing University China
This paper studies the stochastic optimal control problem with additive and multiplicative noise via reinforcement learning (RL) and approximate/adaptive dynamic programming (ADP). Using Itô calculus, a policy it... 详细信息
来源: 评论
dynamic lead time promising
Dynamic lead time promising
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Matthew J. Reindorp Michael C. Fu Department of Industrial Engineering and Innovation Sciences Eindhovan University of Technology Netherlands Robert H. Smith School of Business and Institute of Systems Research University of Maryland USA
We consider a make-to-order business that serves customers in multiple priority classes. Orders from customers in higher classes bring greater revenue, but they expect shorter lead times than customers in lower classe... 详细信息
来源: 评论
Adaptive optimal control for nonlinear discrete-time systems
Adaptive optimal control for nonlinear discrete-time systems
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Chunbin Qin Huaguang Zhang Yanhong Luo School of Information Science and Engineering Northeastern University Shenyang China Basic Experiment Teaching Center Henan University Kaifeng China
This paper proposes an on-line near-optimal control scheme based on capabilities of neural networks (NNs), in function approximation, to attain the on-line solution of optimal control problem for nonlinear discrete-ti... 详细信息
来源: 评论
Development of reinforcement learning Algorithm for 2-DOF Helicopter Model
Development of Reinforcement Learning Algorithm for 2-DOF He...
收藏 引用
ieee international symposium on Industrial Electronics (ISIE)
作者: Andrew Fandel Anthony Birge Suruz Miah Electrical and Computer Engineering Department Bradley University Peoria Illinois USA
This paper examines a reinforcement learning strategy for controlling a two degree-of-freedom (2-DOF) helicopter. The pitch and yaw angles are regulated to their corresponding reference angles by applying appropriate ... 详细信息
来源: 评论
Optimal tracking control scheme for discrete-time nonlinear systems with approximation errors
Optimal tracking control scheme for discrete-time nonlinear ...
收藏 引用
10th international symposium on Neural Networks, ISNN 2013
作者: Wei, Qinglai Liu, Derong State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing 100190 China
In this paper, we aim to solve an infinite-time optimal tracking control problem for a class of discrete-time nonlinear systems using iterative adaptive dynamic programming (ADP) algorithm. When the iterative tracking... 详细信息
来源: 评论
Development of reinforcement learning methods in control and decision making in the large scale dynamic game environments
Development of reinforcement learning methods in control and...
收藏 引用
ieee international Conference on Computer-Aided Design
作者: S. Orafa M.J. Yazdanpanah C. Lucas A. Rahimikian M. Nili Ahmadabadi Control and Intelligent Processing Center of Excellence Faculty of Electrical and Computer Engineering University of Tehran Tehran Iran
In this paper, an analytical comparison is done between dynamic programming and reinforcement learning methods in dynamic two-player games. The emphasis is on the large number of states and actions available for each ... 详细信息
来源: 评论
Directed exploration of policy space using support vector classifiers
Directed exploration of policy space using support vector cl...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Ioannis Rexakis Michail G. Lagoudakis Department of Electronic and Computer Engineering Technical University of Crete Crete Greece
Good policies in reinforcement learning problems typically exhibit significant structure. Several recent learning approaches based on the approximate policy iteration scheme suggest the use of classifiers for capturin... 详细信息
来源: 评论
approximate dynamic programming of continuous annealing process
Approximate dynamic programming of continuous annealing proc...
收藏 引用
ieee international Conference on Automation and Logistics
作者: Yingwei Zhang Chao Guo Xue Chen Yongdong Teng Key Laboratory of Integrated Automation of Process Industry Ministry of Education Northeastern University Shenyang Liaoning China
approximate dynamic programming method is a combination of neural networks, reinforcement learning, as well as the idea of dynamic programming. It is an online control method which bases on actual data rather than a p... 详细信息
来源: 评论