咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是261-270 订阅
排序:
Bayesian Sequential Optimal Experimental Design for Linear Regression with reinforcement learning
Bayesian Sequential Optimal Experimental Design for Linear R...
收藏 引用
international Conference on Machine learning and Applications (ICMLA)
作者: Fadil Santosa Loren Anderson Dept. of Applied Mathematics and Statistics Johns Hopkins University Baltimore MD USA School of Mathematics University of Minnesota Twin Cities Minneapolis MN USA
We perform a comparison study on Bayesian sequential optimal experimental design algorithms applied to linear regression in two unknowns. We transform the Bayesian sequential optimal experimental design problem into a... 详细信息
来源: 评论
Fuzzy Q-learning: a new approach for fuzzy dynamic programming
Fuzzy Q-learning: a new approach for fuzzy dynamic programmi...
收藏 引用
ieee international Conference on Fuzzy Systems (FUZZ-ieee)
作者: H.R. Berenji NASA Ames Research Center Mountain View CA USA
Fuzzy reinforcement learning (FRL) involves "jump starting" reinforcement learning with fuzzy logic rules. By using FRL, prior domain knowledge, which may be very approximate and imprecise, can be expressed ... 详细信息
来源: 评论
Advances in reinforcement learning and their implications for intelligent control
Advances in reinforcement learning and their implications fo...
收藏 引用
ieee international symposium on Intelligent Control (ISIC)
作者: S.D. Whitehead R.S. Sutton D.H. Ballard Department of Computer Sciences University of Rochester Rochester NY USA
The focus of this work is on control architectures that are based on reinforcement learning. A number of recent advances that have contributed to the viability of reinforcement learning approaches to intelligent contr... 详细信息
来源: 评论
A Budget-aware Incentive Mechanism for Vehicle-to-Grid via reinforcement learning  31
A Budget-aware Incentive Mechanism for Vehicle-to-Grid via R...
收藏 引用
31st ieee/ACM international symposium on Quality of Service, IWQoS 2023
作者: Zhu, Tianxiang Zhang, Xiaoxi Duan, Jingpu Zhou, Zhi Chen, Xu Sun Yat-sen University Guangzhou China Southern University of Science and Technology Shenzhen China Pengcheng Laboratory Shenzhen China
With the increasing penetration of renewable energy and electric vehicles (EVs), the behavior of EVs' charging and discharging has shown great impact on the Micro Grid power load, motivating the development of Veh... 详细信息
来源: 评论
Node Fault Prediction Assisted Small-World IoT Networks Using ML Frameworks: Towards Performance Improvement  18
Node Fault Prediction Assisted Small-World IoT Networks Usin...
收藏 引用
18th ieee international Conference on Advanced Networks and Telecommunications Systems, ANTS 2024
作者: Sharma, Neha Gupta, Aryaman Deepak, Sivala Pandey, Om Jee Indian Institute of Technology BHU Department of Electronics Engineering Varanasi India
The rapid growth of the Internet of Things (IoT) networks has led to the deployment of large-scale networks, enabling seamless connectivity and data exchange among various devices. To manage the complexity and ensure ... 详细信息
来源: 评论
Residual-gradient-based neural reinforcement learning for the optimal control of an acrobot
Residual-gradient-based neural reinforcement learning for th...
收藏 引用
ieee international symposium on Intelligent Control (ISIC)
作者: Xin Xu Han-gen He Department of Automatic Control National University of Defense Technology Changsha China
Based on the idea of dynamic programming, reinforcement learning (RL) has become an important model-free method to solve difficult optimal control problems. In this paper, a novel neural RL method is proposed to solve... 详细信息
来源: 评论
reinforcement-learning-based Magneto-hydrodynamic Control of Hypersonic Flows
Reinforcement-Learning-based Magneto-hydrodynamic Control of...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning, (ADPRL)
作者: Nilesh V. Kulkarni Minh Q. Phan NASA Ames Research Center QSS Group Inc. Moffett Field CA USA Dartmouth College Hanover NH USA
In this work, we design a policy-iteration-based Q-learning approach for on-line optimal control of ionized hypersonic flow at the inlet of a scramjet engine. Magneto-hydrodynamics (MHD) has been recently proposed as ... 详细信息
来源: 评论
A dynamic checkpointing scheme based on reinforcement learning
A dynamic checkpointing scheme based on reinforcement learni...
收藏 引用
Pacific Rim international symposium on Dependable Computing
作者: H. Okamura Y. Nishimura T. Dohi Graduate School of Engineering Department of Information Engineering Hiroshima University Higashihiroshima Japan
We develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semiMarkov decision process, and apply the reinforcement learning algorithm to estimate statistically t... 详细信息
来源: 评论
learning PROGRAMS FOR DECISION AND CONTROL
LEARNING PROGRAMS FOR DECISION AND CONTROL
收藏 引用
2001 international Conferences on Info-tech and Info-net
作者: Jennie Si Russell Enns Yu-tsung Wang Department of Electrical Engineering Arizona State University
This paper introduces learning programs,an approximate dynamic programming(ADP) or otherwise named Neural dynamic programming(NDP) algorithm developed and tested by the *** programs are particularly suited for learnin... 详细信息
来源: 评论
A performance gradient perspective on approximate dynamic programming and its application to partially observable Markov decision processes
A performance gradient perspective on approximate dynamic pr...
收藏 引用
ieee international Conference on Computer-Aided Design
作者: James Dankert Lei Yang Jennie Si Department of Electrical Engineering Arizona State University Tempe AZ USA
This paper shows an approach to integrating common approximate dynamic programming (ADP) algorithms into a theoretical framework to address both analytical characteristics and algorithmic features. Several important i... 详细信息
来源: 评论