咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是31-40 订阅
排序:
Feature Discovery in approximate dynamic programming
Feature Discovery in Approximate Dynamic Programming
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Preux, Philippe Girgin, Sertan Loth, Manuel Univ Lille Lab Informat Fondamentale Lille Comp Sci Lab CNRS Lille France INRIA Paris France
Feature discovery aims at finding the best representation of data. This is a very important topic in machine learning, and in reinforcement learning in particular. Based on our recent work on feature discovery in the ... 详细信息
来源: 评论
Coordinated reinforcement learning for decentralized optimal control
Coordinated reinforcement learning for decentralized optimal...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Yagan, Daniel Tharn, Chen-Khong Natl Univ Singapore Dept Elect & Comp Engn Singapore 117548 Singapore
We consider a multi-agent system where the overall performance is affected by the joint actions or policies of agents. However, each agent only observes a partial view of the global state condition. This model is know... 详细信息
来源: 评论
dynamic optimization of the strength ratio during a terrestrial conflict
Dynamic optimization of the strength ratio during a terrestr...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Sztykgold, Alexandre Coppin, Gilles Hudry, Olivier GET ENST Bretagne LUSSI Dept CNRS TAMCICUMR 2872 Bretagne Germany GET ENST Bretagne Dept Comp Sci CNRS LTCI UMR 5141 Bretagne Germany
The aim of this study is to assist a military decision maker during his decision-making process when applying tactics on the battlefield. For that, we have decided to model the conflict by a game, on which we will see... 详细信息
来源: 评论
Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof
Discrete-time nonlinear HJB solution using approximate dynam...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Al-Tamimi, Asma Lewis, Frank Univ Texas Automat & Robot Res Inst Ft Worth TX 76118 USA Univ Texas Arlington Automat & Robot Res Inst Ft Worth TX 76118 USA
In this paper, a greedy iteration scheme based on approximate dynamic programming (ADP), namely Heuristic dynamic programming (HDP), is used to solve for the value function of the Hamilton Jacobi Bellman equation (HJB... 详细信息
来源: 评论
SVM viability controller active learning: Application to bike control
SVM viability controller active learning: Application to bik...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Chapel, Laetitia Deffuant, Guillaume Cemagref LISC Aubiere France
It was shown recently that SVMs are particularly adequate to define action policies to keep a dynamical system inside a given constraint set (in the framework of viability theory). However, the training set of the SVM... 详细信息
来源: 评论
Q-learning with continuous state spaces and finite decision set
Q-learning with continuous state spaces and finite decision ...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Barty, Kengy Girardeau, Pierre Roy, Jean-Sebastien Strugarek, Cyrille EDF R&D 1 Ave Gen Gaulle F-92141 Clamart France
This paper aims to present an original technique in order to compute the optimal policy of a Markov Decision Problem with continuous state space and discrete decision variables. We propose an extension of the Q-learni... 详细信息
来源: 评论
Adaptive railway traffic control using approximate dynamic programming
收藏 引用
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES 2020年 113卷 91-107页
作者: Ghasempour, Taha Heydecker, Benjamin UCL Ctr Transport Studies London WC1E 6BT England
This study presents an adaptive railway traffic controller for real-time operations based on approximate dynamic programming (ADP). By assessing requirements and opportunities, the controller aims to limit consecutive... 详细信息
来源: 评论
Value-iteration based fitted policy iteration:: learning with a single trajectory
Value-iteration based fitted policy iteration:: Learning wit...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Antos, Andras Szepesvari, Csaba Munos, Remi Hungarian Acad Sci Comp & Automat Res Inst Kendu U 13-17 H-1111 Budapest Hungary Univ Alberta Dept Comput Sci Edmonton AB Canada
We consider batch reinforcement learning problems in continuous space, expected total discounted-reward Markovian Decision Problems when the training data is composed of the trajectory of some fixed behaviour policy. ... 详细信息
来源: 评论
Identifying trajectory classes in dynamic tasks
Identifying trajectory classes in dynamic tasks
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Anderson, Stuart O. Srinivasa, Siddhartha S. Carnegie Mellon Univ Inst Robot 5000 Forbes Ave Pittsburgh PA 15213 USA Intel Res Pittsburgh Pittsburgh PA 15213 USA
Using domain knowledge to decompose difficult control problems is a widely used technique in robotics. Previous work has automated the process of identifying some qualitative behaviors of a system, finding a decomposi... 详细信息
来源: 评论
Robust dynamic programming for discounted infinite-horizon Markov decision processes with uncertain stationary transition matrice
Robust dynamic programming for discounted infinite-horizon M...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Li, Baohua Si, Jennie Arizona State Univ Dept Elect Engn Tempe AZ 85287 USA
In this paper, finite-state, Saite-action, discounted infinite-horizon-cost Markov decision processes (MDPs) with uncertain stationary transition matrices are discussed in the deterministic policy space. Uncertain sta... 详细信息
来源: 评论