咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是41-50 订阅
排序:
learning Recovery Strategies for dynamic Self-Healing in Reactive Systems
Learning Recovery Strategies for Dynamic Self-Healing in Rea...
收藏 引用
SEAMS international Workshop on Software Engineering for Adaptive and Self-Managing Systems, ICSE
作者: Mateo Sanabria Ivana Dusparic Nicolás Cardozo Universidad de los Andes Colombia Trinity College Dublin Ireland
Self-healing systems depend on following a set of predefined instructions to recover from a known failure state. Failure states are generally detected based on domain specific specialized metrics. Failure fixes are ap... 详细信息
来源: 评论
Effective Elastic Scaling of Deep learning Workloads  28
Effective Elastic Scaling of Deep Learning Workloads
收藏 引用
28th ieee international symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (ieee MASCOTS)
作者: Saxena, Vaibhav Jayaram, K. R. Basu, Saurav Sabharwal, Yogish Verma, Ashish IBM Res Delhi India Microsoft Hyderabad India
We examine the elastic scaling of Deep learning (DL) jobs and propose a novel resource allocation strategy for DL training jobs, resulting in improved job run time performance as well as increased cluster utilization.... 详细信息
来源: 评论
Revisiting Maximum Entropy Inverse reinforcement learning: New Perspectives and Algorithm
Revisiting Maximum Entropy Inverse Reinforcement Learning: N...
收藏 引用
ieee symposium Series on Computational Intelligence (ieee SSCI)
作者: Snoswell, Aaron J. Singh, Surya P. N. Ye, Nan Univ Queensland Sch Informat Technol & Elect Engn Brisbane Qld Australia Intuit Surg Sunnyvale CA USA Univ Queensland Sch Math & Phys Brisbane Qld Australia
We provide new perspectives and inference algorithms for Maximum Entropy (MaxEnt) Inverse reinforcement learning (IRL), which provides a principled method to find a most non-committal reward function consistent with g... 详细信息
来源: 评论
Trajectory Tracking of Underactuated Sea Vessels With Uncertain dynamics: An Integral reinforcement learning Approach
Trajectory Tracking of Underactuated Sea Vessels With Uncert...
收藏 引用
ieee international Conference on Systems, Man, and Cybernetics (SMC)
作者: Abouheaf, Mohammed Gueaieb, Wail Miah, Md Suruz Spinello, Davide Univ Ottawa Sch Elect Engn & Comp Sci Ottawa ON Canada Bradley Univ Dept Elect & Comp Engn Peoria IL USA Univ Ottawa Dept Mech Engn Ottawa ON Canada
Underactuated systems like sea vessels have degrees of motion that are insufficiently matched by a set of independent actuation forces. In addition, the underlying trajectory-tracking control problems grow in complexi... 详细信息
来源: 评论
Actor-Critic Algorithm for Optimal Synchronization of Kuramoto Oscillator  7
Actor-Critic Algorithm for Optimal Synchronization of Kuramo...
收藏 引用
7th international Conference on Control, Decision and Information Technologies (CoDIT)
作者: Vrushabh, D. Shalini, K. Sonam, K. Veermata Jijabai Technol Inst EED Mumbai Maharashtra India
This paper constructs a reinforcement learning (RL) based algorithm of Actor-Critic (AC) for the optimal synchronism of the Kuramoto oscillator. This is accomplished through the Ott-Antonsen ansatz framework for the d... 详细信息
来源: 评论
Editorial Special Issue on Adaptive dynamic programming and reinforcement learning
收藏 引用
ieee Transactions on Systems, Man, and Cybernetics: Systems 2020年 第11期50卷 3944-3947页
作者: Liu, Derong Lewis, Frank L. Wei, Qinglai School of Automation Guangdong University of Technology Guangzhou510006 China Uta Research Institute University of Texas at Arlington Fort WorthTX76118 United States State Key Laboratory of Management and Control for Complex Systems Istitute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
The past decade has witnessed a surge in research activities related to adaptive dynamic programming (ADP) and reinforcement learning (RL), particularly for control applications. Several books [item 1)–5) in the Appe... 详细信息
来源: 评论
Resource Provisioning in Fog Computing through Deep reinforcement learning
Resource Provisioning in Fog Computing through Deep Reinforc...
收藏 引用
IFIP/ieee international symposium on Integrated Network Management
作者: José Santos Tim Wauters Bruno Volckaert Filip De Turck IDLab Ghent University - imec Gent Belgium
The massive growth of connected devices has made traditional cloud systems inadequate to sustain the scalability, mobility, and heterogeneous nature of the Internet of Things (oT). Distributed clouds have become a pot... 详细信息
来源: 评论
Bridging Hamilton-Jacobi Safety Analysis and reinforcement learning
Bridging Hamilton-Jacobi Safety Analysis and Reinforcement L...
收藏 引用
ieee international Conference on Robotics and Automation (ICRA)
作者: Fisac, Jaime E. Lugovoy, Neil E. Rubies-Royo, Vicenc Ghosh, Shromona Tomlin, Claire J. Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA
Safety analysis is a necessary component in the design and deployment of autonomous robotic systems. Techniques from robust optimal control theory, such as Hamilton-Jacobi reachability analysis, allow a rigorous forma... 详细信息
来源: 评论
Event-trigger-based robust control for nonlinear constrained-input systems using reinforcement learning method
收藏 引用
NEUROCOMPUTING 2019年 340卷 158-170页
作者: Yang, Dongsheng Li, Ting Zhang, Huaguang Xie, Xiangpeng Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China Nanjing Univ Posts & Telecommun Inst Adv Technol Nanjing 210023 Jiangsu Peoples R China
In this paper, an online integral reinforcement learning strategy is proposed to deal with robust constrained control problems using event-triggered mechanism for nonlinear Continuous-Time (C-T) systems with external ... 详细信息
来源: 评论
Chic: Experience-driven Scheduling in Machine learning Clusters  19
Chic: Experience-driven Scheduling in Machine Learning Clust...
收藏 引用
ieee/ACM international symposium on Quality of Service (IWQoS)
作者: Gong, Yifan Li, Baochun Liang, Ben Zhan, Zheng Univ Toronto Dept Elect & Comp Engn Toronto ON Canada Syracuse Univ Coll Engn & Comp Sci Syracuse NY 13244 USA
Large-scale machine learning (ML) models are routinely trained in a distributed fashion, due to their increasing complexity and data sizes. In a shared cluster handling multiple distributed learning workloads with a p... 详细信息
来源: 评论