咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是51-60 订阅
排序:
An Adaptive dynamic programming Algorithm to Solve Optimal Control of Uncertain Nonlinear Systems
An Adaptive Dynamic Programming Algorithm to Solve Optimal C...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Cui, Xiaohong Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an approximate optimal control method based on adaptive dynamic programming(ADP) is discussed for completely unknown nonlinear system. An online critic-action-identifier algorithm is developed using neu... 详细信息
来源: 评论
Neural-Network-Based reinforcement learning Controller for Nonlinear Systems with Non-symmetric Dead-zone Inputs
Neural-Network-Based Reinforcement Learning Controller for N...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Zhang, Xin Zhang, Huaguang Liu, Derong Kim, Yongsu Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Liaoning Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
A novel adaptive-critic-based NN controller using reinforcement learning is developed for a class of nonlinear systems with non-symmetric dead-zone inputs. The adaptive critic NN controller uses two NNs: the critic NN... 详细信息
来源: 评论
Exponential Moving Average Q-learning Algorithm
Exponential Moving Average Q-Learning Algorithm
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Awheda, Mostafa D. Schwartz, Howard M. Carleton Univ Dept Syst & Comp Engn Ottawa ON K1S 5B6 Canada
A multi-agent policy iteration learning algorithm is proposed in this work. The Exponential Moving Average (EMA) mechanism is used to update the policy for a Q-learning agent so that it converges to an optimal policy ... 详细信息
来源: 评论
Finite-Horizon Optimal Control Design for Uncertain Linear Discrete-time Systems
Finite-Horizon Optimal Control Design for Uncertain Linear D...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Zhao, Qiming Xu, Hao Jagannathan, S. Missouri Univ S&T Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, the finite-horizon optimal adaptive control design for linear discrete-time systems with unknown system dynamics by using adaptive dynamic programming (ADP) is presented. In the presence of full state f... 详细信息
来源: 评论
A Comparison of approximate dynamic programming Techniques on Benchmark Energy Storage Problems: Does Anything Work?
A Comparison of Approximate Dynamic Programming Techniques o...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Jiang, Daniel R. Pham, Thuy V. Powell, Warren B. Salas, Daniel F. Scott, Warren R.
As more renewable, yet volatile, forms of energy like solar and wind are being incorporated into the grid, the problem of finding optimal control policies for energy storage is becoming increasingly important. These s... 详细信息
来源: 评论
approximate reinforcement learning: An overview
Approximate reinforcement learning: An overview
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Buşoniu, Lucian Ernst, Damien De Schutter, Bart Babuška, Robert Delft Center for Systems and Control Delft Univ. of Technology Netherlands Research Associate of the FRS-FNRS Systems and Modeling Unit University of Liège Liège Belgium
reinforcement learning (RL) allows agents to learn how to optimally interact with complex environments. Fueled by recent advances in approximation-based algorithms, RL has obtained impressive successes in robotics, ar... 详细信息
来源: 评论
Optimal control for a class of nonlinear systems with state delay based on Adaptive dynamic programming with ε-error bound
Optimal control for a class of nonlinear systems with state ...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Cao, Nuyun Lin, Yuzhang Guangxi Univ Sch Elect Engn Nanning 530004 Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
In this paper, a finite-horizon epsilon-optimal control for a class of nonlinear systems with state delay is proposed by Adaptive dynamic programming (ADP) algorithm. First of all, the performance index function is de... 详细信息
来源: 评论
approximate optimal control-based neurocontroller with a state observation system for seedlings growth in greenhouse
Approximate optimal control-based neurocontroller with a sta...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Patino, H. D. Pucheta, J. A. Schugurensky, C. Fullana, R. Kuchen, B. Univ Nacl San Juan Inst Automat Fac Ingn Av San Martin 1109 Oeste RA-5400 San Juan Argentina
In this paper, an approximate optimal control-based neurocontroller for guiding the seedlings growth in greenhouse is presented. The main goal of this approach is to obtain a close-loop operation with a state neurocon... 详细信息
来源: 评论
Free Energy based Policy Gradients
Free Energy based Policy Gradients
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Theodorou, Evangelos A. Najemnik, Jiri Todorov, Emo Univ Washington Dept Comp Sci & Engn Seattle WA 98195 USA Univ Washington Dept Appl Math Seattle WA 98195 USA
Despite the plethora of reinforcement learning algorithms in machine learning and control, the majority of the work in this area relies on discrete time formulations of stochastic dynamics. In this work we present a n... 详细信息
来源: 评论
A reinforcement learning algorithm developed to model GenCo strategic bidding behavior in multidimensional and continuous state and action spaces
A reinforcement learning algorithm developed to model GenCo ...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lau, Alfred Yong Fu Srinivasan, Dipti Reindl, Thomas Natl Univ Singapore Dept Elect Comp Engn 4 Engn Dr 3 Singapore 117576 Singapore Natl Univ Singapore Solar Energy Res Inst Singapore 117574 Singapore
The electricity market have provided a complex economic environment, and consequently have increased the requirement for advancement of learning methods. In the agent-based modeling and simulation framework of this ec... 详细信息
来源: 评论