咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是61-70 订阅
排序:
DHP adaptive critic motion control of autonomous wheeled mobile robot
DHP adaptive critic motion control of autonomous wheeled mob...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Lin, Wei-Song Yang, Ping-Chieh Natl Taiwan Univ Dept Elect Engn Inst Elect Engn 1 Sec 4Roosevelt Rd Taipei 106 Taiwan
Autonomous drive of wheeled mobile robot (WMR) needs implementing velocity and path tracking control subject to complex dynamical constraints. Conventionally, this control design is obtained by analysis and synthesis ... 详细信息
来源: 评论
approximate dynamic programming for Stochastic Systems with Additive and Multiplicative Noise
Approximate Dynamic Programming for Stochastic Systems with ...
收藏 引用
ieee international symposium on Intelligent Control (ISIC)/ieee Multi-Conference on Systems and Control (MSC)
作者: Jiang, Yu Jiang, Zhong-Ping NYU Polytech Inst Dept Elect & Comp Engn Brooklyn NY 11201 USA
This paper studies the stochastic optimal control problem with additive and multiplicative noise via reinforcement learning (RL) and approximate/adaptive dynamic programming (ADP). Using Ito calculus, a policy iterati... 详细信息
来源: 评论
Adaptive sample collection using active learning for kernel-based approximate policy iteration
Adaptive sample collection using active learning for kernel-...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Liu, Chunming Xu, Xin Haiyun Hu Dai, Bin College of Mechatronics and Automation National University of Defense Technology Changsha 410073 China
approximate policy iteration (API) has been shown to be a class of reinforcement learning methods with stability and sample efficiency. However, sample collection is still an open problem which is critical to the perf... 详细信息
来源: 评论
reinforcement-learning-based magneto-hydrodynamic control of hypersonic flows
Reinforcement-learning-based magneto-hydrodynamic control of...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Kulkarni, Nilesh V. Phan, Minh Q. NASA Ames Res Ctr QSS Grp Inc Moffett Field CA 94035 USA Dartmouth Coll Thayer Sch Engn Hanover NH 03755 USA
In this work, we design a policy-iteration-based Q-learning approach for on-line optimal control of ionized hypersonic flow at the inlet of a scramjet engine. Magneto-hydrodynamics (MHD) has been recently proposed as ... 详细信息
来源: 评论
reinforcement learning in the Game of Othello: learning Against a Fixed Opponent and learning from Self-Play
Reinforcement Learning in the Game of Othello: Learning Agai...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: van der Ree, Michiel Wiering, Marco Univ Groningen Inst Artificial Intelligence & Cognit Engn Fac Math & Nat Sci NL-9700 AB Groningen Netherlands
This paper compares three strategies in using reinforcement learning algorithms to let an artificial agent learn to play the game of Othello. The three strategies that are compared are: learning by self-play, learning... 详细信息
来源: 评论
Adaptive dynamic programming-based optimal tracking control for nonlinear systems using general value iteration
Adaptive dynamic programming-based optimal tracking control ...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Ding, Qiang Kong, Weikai Song, Chunning Huang, Qingbao Guangxi Univ Sch Elect Engn Nanning Peoples R China
For the optimal tracking control problem of affine nonlinear systems, a general value iteration algorithm based on adaptive dynamic programming is proposed in this paper. By system transformation, the optimal tracking... 详细信息
来源: 评论
A Combined Hierarchical reinforcement learning Based Approach For Multi-robot Cooperative Target Searching in Complex Unknown Environments
A Combined Hierarchical Reinforcement Learning Based Approac...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Cai, Yifan Yang, Simon X. Xu, Xin Univ Guelph Sch Engn Guelph ON N1G 2W1 Canada Natl Univ Def Technol Coll Mechatron & Automat Changsha 410073 Hunan Peoples R China
Effective cooperation of multi-robots in unknown environments is essential in many robotic applications, such as environment exploration and target searching. In this paper, a combined hierarchical reinforcement learn... 详细信息
来源: 评论
Finite Horizon Stochastic Optimal Control of Uncertain Linear Networked Control System
Finite Horizon Stochastic Optimal Control of Uncertain Linea...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Xu, Hao Jagannathan, S. Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, finite horizon stochastic optimal control issue has been studied for linear networked control system (LNCS) in the presence of network imperfections such as network-induced delays and packet losses by u... 详细信息
来源: 评论
Iterative Local dynamic programming
Iterative Local Dynamic Programming
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Todorov, Emanuel Tassa, Yuval Univ Calif San Diego Dept Cognit Sci La Jolla CA 92093 USA Hebrew Univ Jerusalem Ctr Neural Computat IL-91905 Jerusalem Israel
We develop an iterative local dynamic programming method (iLDP) applicable to stochastic optimal control problems in continuous high-dimensional state and action spaces. Such problems are common in the control of biol... 详细信息
来源: 评论
A scalable model-free recurrent neural network framework for solving POMDPs
A scalable model-free recurrent neural network framework for...
收藏 引用
ieee international symposium on approximate dynamic programming and reinforcement learning
作者: Liu, Zhenzhen Elhanany, Itamar Univ Tennessee Dept Elect & Comp Engn Knoxville TN 37996 USA
This paper presents a framework for obtaining an optimal policy in model-free Partially Observable Markov Decision Problems (POMDPs) using a recurrent neural network (RNN). A Q-function approximation approach is taken... 详细信息
来源: 评论