咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是71-80 订阅
排序:
Bias-Corrected Q-learning to Control Max-Operator Bias in Q-learning
Bias-Corrected Q-Learning to Control Max-Operator Bias in Q-...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lee, Donghun Defourny, Boris Powell, Warren B. Princeton Univ Dept Comp Sci Princeton NJ 08540 USA Princeton Univ Dept Operat Res & Financial Engn Princeton NJ 08540 USA
We identify a class of stochastic control problems with highly random rewards and high discount factor which induce high levels of statistical error in the estimated action-value function. This produces significant le... 详细信息
来源: 评论
Scalarized Multi-Objective reinforcement learning: Novel Design Techniques
Scalarized Multi-Objective Reinforcement Learning: Novel Des...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Van Moffaert, Kristof Drugan, Madalina M. Nowe, Ann Vrije Univ Brussel Dept Comp Sci B-1050 Brussels Belgium
In multi-objective problems, it is key to find compromising solutions that balance different objectives. The linear scalarization function is often utilized to translate the multi-objective nature of a problem into a ... 详细信息
来源: 评论
reinforcement learning to Train Ms. Pac-Man Using Higher-order Action-relative Inputs
Reinforcement Learning to Train Ms. Pac-Man Using Higher-ord...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Bom, Luuk Henken, Ruud Wiering, Marco Univ Groningen Inst Artificial Intelligence & Cognit Engn Fac Math & Nat Sci NL-9700 AB Groningen Netherlands
reinforcement learning algorithms enable an agent to optimize its behavior from interacting with a specific environment. Although some very successful applications of reinforcement learning algorithms have been develo... 详细信息
来源: 评论
A Study on the Efficiency of learning a Robot Controller in Various Environments
A Study on the Efficiency of Learning a Robot Controller in ...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Soga, Sachiko Kobayashi, Ichiro Ochanomizu Univ Grad Sch Humanities & Sci Bunkyo Ku Tokyo 1128610 Japan
In the case that a robot controller is trained by means of evolutionary computation, the robot will be able to behave sufficiently in the environment where the robot has been trained. However, if the robot is put in a... 详细信息
来源: 评论
Delayed Insertion and Rule Effect Moderation of Domain Knowledge for reinforcement learning
Delayed Insertion and Rule Effect Moderation of Domain Knowl...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Teng, Teck-Hou Tan, Ah-Hwee Nanyang Technol Univ Sch Comp Engn Ctr Computat Intelligence Singapore Singapore Nanyang Technol Univ Sch Comp Engn Singapore Singapore
Though not a fundamental pre-requisite to efficient machine learning, insertion of domain knowledge into adaptive virtual agent is nonetheless known to improve learning efficiency and reduce model complexity. Conventi... 详细信息
来源: 评论
Optimistic Planning for Continuous-Action Deterministic Systems
Optimistic Planning for Continuous-Action Deterministic Syst...
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Busoniu, Lucian Daniels, Alexander Munos, Remi Babuska, Robert Univ Lorraine CRAN UMR 7039 Nancy France CNRS CRAN UMR 7039 Nancy France Delft Univ Technol DCSC Delft Netherlands INRIA Lille Nord Europe Team SequeL Lille France
We consider the class of online planning algorithms for optimal control, which compared to dynamic programming are relatively unaffected by large state dimensionality. We introduce a novel planning algorithm called SO... 详细信息
来源: 评论
The Second Order Temporal Difference Error for Sarsa(λ)
The Second Order Temporal Difference Error for Sarsa(λ)
收藏 引用
4th ieee international symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Fu, Qiming Liu, Quan Xiao, Fei Chen, Guixin Soochow Univ Dept Comp Sci & Technol Suzhou Peoples R China
Traditional reinforcement learning algorithms, such as Q-learning, Q(lambda), Sarsa, and Sarsa(lambda), update the action value function using temporal difference (TD) error, which is computed by the last action value... 详细信息
来源: 评论
Using approximate dynamic programming for Estimating the Revenues of a Hydrogen-based High-Capacity Storage Device
Using Approximate Dynamic Programming for Estimating the Rev...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Francois-Lavet, Vincent Fonteneau, Raphael Ernst, Damien Univ Liege Dept Elect Engn & Comp Sci B-4000 Liege Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
Bayesian active learning with basis functions
Bayesian active learning with basis functions
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Ryzhov, Ilya O. Powell, Warren B. Operations Research and Financial Engineering Princeton University Princeton NJ 08544 United States
A common technique for dealing with the curse of dimensionality in approximate dynamic programming is to use a parametric value function approximation, where the value of being in a state is assumed to be a linear com... 详细信息
来源: 评论
An approximate dynamic programming based controller for an underactuated 6DoF quadrotor
An approximate Dynamic Programming based controller for an u...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Stingu, Emanuel Lewis, Frank L. Automation and Robotics Research Institute University of Texas at Arlington Arlington TX United States
This paper discusses how the principles of Adaptive dynamic programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbance... 详细信息
来源: 评论