咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 307 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 180 篇 工学
    • 158 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 48 篇 软件工程
    • 47 篇 控制科学与工程
    • 13 篇 信息与通信工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 生物工程
    • 3 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 核科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 航空宇航科学与技...
    • 1 篇 食品科学与工程(可...
  • 40 篇 理学
    • 35 篇 数学
    • 9 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 18 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 医学

主题

  • 115 篇 dynamic programm...
  • 76 篇 reinforcement le...
  • 67 篇 learning
  • 47 篇 optimal control
  • 30 篇 neural networks
  • 27 篇 control systems
  • 21 篇 approximate dyna...
  • 21 篇 approximation al...
  • 20 篇 function approxi...
  • 20 篇 equations
  • 17 篇 convergence
  • 16 篇 adaptive dynamic...
  • 16 篇 state-space meth...
  • 16 篇 heuristic algori...
  • 14 篇 mathematical mod...
  • 13 篇 stochastic proce...
  • 12 篇 learning (artifi...
  • 12 篇 adaptive control
  • 12 篇 cost function
  • 11 篇 algorithm design...

机构

  • 5 篇 arizona state un...
  • 4 篇 department of el...
  • 4 篇 school of inform...
  • 4 篇 department of in...
  • 4 篇 univ sci & techn...
  • 4 篇 chinese acad sci...
  • 4 篇 department of el...
  • 3 篇 princeton univ d...
  • 3 篇 northeastern uni...
  • 3 篇 national science...
  • 3 篇 robotics institu...
  • 3 篇 univ illinois de...
  • 3 篇 univ utrecht dep...
  • 2 篇 univ groningen i...
  • 2 篇 sharif univ tech...
  • 2 篇 univ texas autom...
  • 2 篇 pengcheng labora...
  • 2 篇 guangxi univ sch...
  • 2 篇 chinese acad sci...
  • 2 篇 cemagref lisc au...

作者

  • 14 篇 liu derong
  • 9 篇 wei qinglai
  • 8 篇 si jennie
  • 7 篇 xu xin
  • 5 篇 derong liu
  • 4 篇 lewis frank l.
  • 4 篇 martin riedmille...
  • 4 篇 huaguang zhang
  • 4 篇 jennie si
  • 4 篇 marco a. wiering
  • 4 篇 xin xu
  • 4 篇 zhang huaguang
  • 4 篇 dongbin zhao
  • 4 篇 lei yang
  • 4 篇 powell warren b.
  • 4 篇 riedmiller marti...
  • 3 篇 hado van hasselt
  • 3 篇 van hasselt hado
  • 3 篇 jagannathan s.
  • 3 篇 munos remi

语言

  • 305 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning"
307 条 记 录,以下是81-90 订阅
排序:
Higher-level application of Adaptive dynamic programming/reinforcement learning - A next phase for controls and system identification?
Higher-level application of Adaptive Dynamic Programming/Rei...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Lendaris, George G. Systems Science Graduate Program Portland State University Portland OR United States
In previous work it was shown that Adaptive-Critic-type approximate dynamic programming could be applied in a higher-level way to create autonomous agents capable of using experience to discern context and select opti... 详细信息
来源: 评论
Short-term stock market timing prediction under reinforcement learning schemes
Short-term stock market timing prediction under reinforcemen...
收藏 引用
2007 ieee symposium on approximate dynamic programming and reinforcement learning, ADPRL 2007
作者: Hailin, Li Dagli, Cihan H. Enke, David Department of Engineering Management and Systems Engineering University of Missouri-Rolla Rolla MO 65409-0370 United States
There are fundamental difficulties when only using a supervised learning philosophy to predict financial stock short-term movements. We present a reinforcement-oriented forecasting framework in which the solution is c... 详细信息
来源: 评论
ieee SSCI 2011: symposium Series on Computational Intelligence - ADPRL 2011: 2011 ieee symposium on Adaptive dynamic programming and reinforcement learning
IEEE SSCI 2011: Symposium Series on Computational Intelligen...
收藏 引用
symposium Series on Computational Intelligence, ieee SSCI2011 - 2011 ieee symposium on Adaptive dynamic programming and reinforcement learning, ADPRL 2011
The proceedings contain 45 papers. The topics discussed include: active learning for personalizing treatment;active exploration by searching for experiments that falsify the computed control policy;optimistic planning...
来源: 评论
Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems
Adaptive dynamic programming for optimal control of unknown ...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Liu, Derong Wang, Ding Zhao, Dongbin Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100190 China
An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via glob... 详细信息
来源: 评论
ieee SSCI 2014 - 2014 ieee symposium Series on Computational Intelligence - ADPRL 2014: 2014 ieee symposium on Adaptive dynamic programming and reinforcement learning, Proceedings
IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational...
收藏 引用
2014 ieee symposium on Adaptive dynamic programming and reinforcement learning, ADPRL 2014
The proceedings contain 42 papers. The topics discussed include: approximate real-time optimal control based on sparse Gaussian process models;subspace identification for predictive state representation by nuclear nor...
来源: 评论
Bayesian Sequential Optimal Experimental Design for Linear Regression with reinforcement learning  21
Bayesian Sequential Optimal Experimental Design for Linear R...
收藏 引用
21st ieee international Conference on Machine learning and Applications (ieee ICMLA)
作者: Santosa, Fadil Anderson, Loren Johns Hopkins Univ Dept Appl Math & Stat Baltimore MD 21218 USA Univ Minnesota Twin Cities Sch Math Minneapolis MN USA
We perform a comparison study on Bayesian sequential optimal experimental design algorithms applied to linear regression in two unknowns. We transform the Bayesian sequential optimal experimental design problem into a... 详细信息
来源: 评论
approximate Real-Time Optimal Control Based on Sparse Gaussian Process Models
Approximate Real-Time Optimal Control Based on Sparse Gaussi...
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Boedecker, Joschka Springenberg, Jost Tobias Wuelfing, Jan Riedmiller, Martin Univ Freiburg Dept Comp Sci Machine Learning Lab D-79110 Freiburg Germany
In this paper we present a fully automated approach to (approximate) optimal control of non-linear systems. Our algorithm jointly learns a non-parametric model of the system dynamics - based on Gaussian Process Regres... 详细信息
来源: 评论
Proceedings of the 2013 ieee symposium on Adaptive dynamic programming and reinforcement learning, ADPRL 2013 - 2013 ieee symposium Series on Computational Intelligence, SSCI 2013
Proceedings of the 2013 IEEE Symposium on Adaptive Dynamic P...
收藏 引用
2013 4th ieee symposium on Adaptive dynamic programming and reinforcement learning, ADPRL 2013
The proceedings contain 28 papers. The topics discussed include: local stability analysis of high-order recurrent neural networks with multi-step piecewise linear activation functions;finite-horizon optimal control de...
来源: 评论
dynamic lead time promising
Dynamic lead time promising
收藏 引用
ieee symposium on Adaptive dynamic programming and reinforcement learning
作者: Reindorp, Matthew J. Fu, Michael C. Department of Industrial Engineering and Innovation Sciences Eindhoven University of Technology Netherlands Robert H. Smith School of Business Institute for Systems Research University of Maryland United States
We consider a make-to-order business that serves customers in multiple priority classes. Orders from customers in higher classes bring greater revenue, but they expect shorter lead times than customers in lower classe... 详细信息
来源: 评论
Development of reinforcement learning methods in control and decision making in the large scale dynamic game environments
Development of reinforcement learning methods in control and...
收藏 引用
ieee international symposium on Intelligent Control
作者: Orafa, S. Yazdanpanah, M. J. Lucas, C. Rahimikian, A. Ahmadabadi, M. Nili Univ Tehran Control & Intelligent Proc Ctr Excellence Fac Elect & Comp Engn Tehran Iran
In this paper, an analytical comparison is done between dynamic programming and reinforcement learning methods in dynamic two-player games. The emphasis is on the large number of states and actions available for each ... 详细信息
来源: 评论