咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是91-100 订阅
排序:
Policy Iteration adaptive dynamic programming Algorithm for Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2014年 第3期25卷 621-634页
作者: Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterativ... 详细信息
来源: 评论
adaptive dynamic programming for Discrete-time LQR Optimal Tracking Control Problems with Unknown dynamics
Adaptive Dynamic Programming for Discrete-time LQR Optimal T...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Liu, Yang Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an optimal tracking control approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for unknown discrete-time systems in an onl... 详细信息
来源: 评论
adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal learning Control
收藏 引用
ieee/CAA Journal of Automatica Sinica 2023年 第9期10卷 1797-1809页
作者: Ding Wang Jiangyu Wang Mingming Zhao Peng Xin Junfei Qiao IEEE Faculty of Information Technology the Beijing Key Laboratory of Computational Intelligence and Intelligent Systemthe Beijing Laboratory of Smart Environmental Protectionand the Beijing Institute of Artificial IntelligenceBeijing University of TechnologyBeijing 100124China
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control *** is shown that,initialized by the zero cost function,MsHDP can converge to the op... 详细信息
来源: 评论
adaptive dynamic programming and adaptive Optimal Output Regulation of Linear Systems
收藏 引用
ieee TRANSACTIONS ON AUTOMATIC CONTROL 2016年 第12期61卷 4164-4169页
作者: Gao, Weinan Jiang, Zhong-Ping NYU Tandon Sch Engn Dept Elect & Comp Engn Brooklyn NY 11201 USA
This note studies the adaptive optimal output regulation problem for continuous-time linear systems, which aims to achieve asymptotic tracking and disturbance rejection by minimizing some predefined costs. Reinforceme... 详细信息
来源: 评论
Iterative Local dynamic programming
Iterative Local Dynamic Programming
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Todorov, Emanuel Tassa, Yuval Univ Calif San Diego Dept Cognit Sci La Jolla CA 92093 USA Hebrew Univ Jerusalem Ctr Neural Computat IL-91905 Jerusalem Israel
We develop an iterative local dynamic programming method (iLDP) applicable to stochastic optimal control problems in continuous high-dimensional state and action spaces. Such problems are common in the control of biol... 详细信息
来源: 评论
The QV Family Compared to Other reinforcement learning Algorithms
The QV Family Compared to Other Reinforcement Learning Algor...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Wiering, Marco A. van Hasselt, Hado Univ Groningen Dept Artificial Intelligence NL-9700 AB Groningen Netherlands Univ Utrecht Intelligent Syst Grp NL-3508 TC Utrecht Netherlands
This paper describes several new online model-free reinforcement learning (RL) algorithms. We designed three new reinforcement algorithms, namely: QV2, QVMAX, and QV-MAX2, that are all based on the QV-learning algorit... 详细信息
来源: 评论
reinforcement learning Based adaptive Blocklength and MCS for Optimizing Age Violation Probability
收藏 引用
ieee ACCESS 2023年 11卷 122411-122425页
作者: Ozkaya, Aysenur Topbas, Ahsen Ceran, Elif Tugce Aselsan Inc TR-06200 Ankara Turkiye Middle East Tech Univ Dept Elect & Elect Engn TR-06800 Ankara Turkiye
As a measure of the freshness of data, Age of Information (AoI) has become an essential performance metric in status update applications with stringent timeliness constraints. This study employs adaptive strategies to... 详细信息
来源: 评论
adaptive dynamic programming for Finite-Horizon Optimal Control of Discrete-Time Nonlinear Systems with ε-Error Bound
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS 2011年 第1期22卷 24-36页
作者: Wang, Fei-Yue Jin, Ning Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat Key Lab Complex Syst & Intelligence Sci Beijing 100190 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the... 详细信息
来源: 评论
Supervised adaptive dynamic programming based adaptive cruise control
Supervised adaptive dynamic programming based adaptive cruis...
收藏 引用
symposium Series on Computational Intelligence, ieee SSCI2011 - 2011 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2011
作者: Zhao, Dongbin Hu, Zhaohui Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100190 China
This paper proposes a supervised adaptive dynamic programming (SADP) algorithm for the full range adaptive cruise control (ACC) system. The full range ACC system considers both the ACC situation in highway system and ... 详细信息
来源: 评论
adaptive learning in Tracking Control Based on the Dual Critic Network Design
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2013年 第6期24卷 913-928页
作者: Ni, Zhen He, Haibo Wen, Jinyu Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA Huazhong Univ Sci & Technol Coll Elect Elect & Engn Wuhan 430074 Peoples R China
In this paper, we present a new adaptive dynamic programming approach by integrating a reference network that provides an internal goal representation to help the systems learning and optimization. Specifically, we bu... 详细信息
来源: 评论