咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是141-150 订阅
排序:
Approximate reinforcement learning: An overview
Approximate reinforcement learning: An overview
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Buşoniu, Lucian Ernst, Damien De Schutter, Bart Babuška, Robert Delft Center for Systems and Control Delft Univ. of Technology Netherlands Research Associate of the FRS-FNRS Systems and Modeling Unit University of Liège Liège Belgium
reinforcement learning (RL) allows agents to learn how to optimally interact with complex environments. Fueled by recent advances in approximation-based algorithms, RL has obtained impressive successes in robotics, ar... 详细信息
来源: 评论
Using reward-weighted imitations for robot reinforcement learning
Using reward-weighted imitations for robot reinforcement lea...
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
作者: Peters, Jan Kober, Jens Department of Empirical Inference and Machine Leartling Max Planck Institute for Biological Cybernetics Spemannstr. 38 72076 Tlibingen Germany
reinforcement learning is an essential ability for robots to learn new motor skills. Nevertheless, few methods scale into the domain of anthropomorphic robotics. In order to improve in terms of efficiency, the problem... 详细信息
来源: 评论
Feedback controller parameterizations for reinforcement learning
Feedback controller parameterizations for Reinforcement Lear...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Roberts, John W. Manchester, Ian R. Tedrake, Russ CSAIL MIT Cambridge MA 02139 United States
reinforcement learning offers a very general framework for learning controllers, but its effectiveness is closely tied to the controller parameterization used. Especially when learning feedback controllers for weakly ... 详细信息
来源: 评论
learning-Based Neural dynamic Surface Predictive Control for MMC
收藏 引用
ieee TRANSACTIONS ON POWER ELECTRONICS 2023年 第1期38卷 53-59页
作者: Liu, Xing Qiu, Lin Rodriguez, Jose Wang, Kui Li, Yongdong Fang, Youtong Zhejiang Univ Coll Elect Engn Hangzhou 310027 Peoples R China Zhejiang Univ Univ Illinois Urbana Champaign Inst Hangzhou 310027 Peoples R China Tsinghua Univ Dept Elect Engn State Key Lab Power Syst Beijing 100084 Peoples R China Univ San Sebastian Santiago Fac Engn Santiago 8420524 Chile
reinforcement learning technique was developed recently as an interesting topic in designing adaptive optimal controllers. This technique explicitly provided a feasible solution to circumvent the "curse of dimens... 详细信息
来源: 评论
An Improved N-Step Value Gradient learning adaptive dynamic programming Algorithm for Online learning
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2020年 第4期31卷 1155-1169页
作者: Al-Dabooni, Seaar Wunsch, Donald C., II Missouri Univ Sci & Technol ACIL Rolla MO 65401 USA Basra Oil Co Basra 61030 Iraq Missouri Univ Sci & Technol Dept Elect & Comp Engn ACIL Rolla MO 65401 USA
In problems with complex dynamics and challenging state spaces, the dual heuristic programming (DHP) algorithm has been shown theoretically and experimentally to perform well. This was recently extended by an approach... 详细信息
来源: 评论
Generalized Policy Iteration adaptive dynamic programming for Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2015年 第12期45卷 1577-1591页
作者: Liu, Derong Wei, Qinglai Yan, Pengfei Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a novel generalized policy iteration algorithm for solving optimal control problems for discrete-time nonlinear systems. The idea is to use an iterative adaptive dynamic programming algori... 详细信息
来源: 评论
Value Iteration adaptive dynamic programming for Optimal Control of Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2016年 第3期46卷 840-853页
作者: Wei, Qinglai Liu, Derong Lin, Hanquan Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iterati... 详细信息
来源: 评论
DRL-ECMS: An adaptive Hierarchical Equivalent Consumption Minimization Strategy Based on Deep reinforcement learning
DRL-ECMS: An Adaptive Hierarchical Equivalent Consumption Mi...
收藏 引用
33rd ieee Intelligent Vehicles symposium (ieee IV)
作者: Lin, Yang Chu, Liang Hu, Jincheng Zhang, Yuanjian Hou, Zhuoran Jilin Univ State Key Lab Automot Dynam Simulat & Control Changchun Peoples R China Univ Glasgow Sch Comp Sci Glasgow Lanark Scotland Queens Univ Belfast W Tech Ctr Belfast Antrim North Ireland
With the rise of machine learning, reinforcement learning (RL) is gradually applied to the energy management strategy (EMS) of plug-in hybrid electric vehicle (PHEV). Some old algorithms have also achieved better resu... 详细信息
来源: 评论
Experimental Validation of Data-Driven adaptive Optimal Control for Continuous-Time Systems Via Hybrid Iteration: An Application to Rotary Inverted Pendulum
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2024年 第6期71卷 6210-6220页
作者: Qasem, Omar Gutierrez, Hector Gao, Weinan Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Florida Inst Technol Coll Engn & Sci Dept Mech & Civil Engn Melbourne FL 32901 USA
In this article, a successive approximation learning framework for adaptive optimal control problems, named hybrid iteration (HI), is presented and validated experimentally. The HI strategy outperforms two well-known ... 详细信息
来源: 评论
Continuous-time ADP for linear systems with partially unknown dynamics
Continuous-time ADP for linear systems with partially unknow...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Vrabie, Draguna Abu-Khalaf, Murad Lewis, Frank L. Wang, Youyi Univ Texas Automat & Robot Res Inst Ft Worth TX 76118 USA Nanyang Technol Univ Sch Elect & Elect Engn Singapore Singapore
Approximate dynamic programming has been formulated and applied mainly to discrete-time systems. Expressing the ADP concept for continuous-time systems raises difficult issues related to sampling time and system model... 详细信息
来源: 评论