咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是171-180 订阅
排序:
dynamic lead time promising
Dynamic lead time promising
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Reindorp, Matthew J. Fu, Michael C. Department of Industrial Engineering and Innovation Sciences Eindhoven University of Technology Netherlands Robert H. Smith School of Business Institute for Systems Research University of Maryland United States
We consider a make-to-order business that serves customers in multiple priority classes. Orders from customers in higher classes bring greater revenue, but they expect shorter lead times than customers in lower classe... 详细信息
来源: 评论
A Theoretical Foundation of Goal Representation Heuristic dynamic programming
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2016年 第12期27卷 2513-2525页
作者: Zhong, Xiangnan Ni, Zhen He, Haibo Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA South Dakota State Univ Dept Elect Engn & Comp Sci Brooking SD 57007 USA
Goal representation heuristic dynamic programming (GrHDP) control design has been developed in recent years. The control performance of this design has been demonstrated in several case studies, and also showed applic... 详细信息
来源: 评论
Safe reinforcement learning in high-risk tasks through policy improvement
Safe reinforcement learning in high-risk tasks through polic...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Garcia Polo, Francisco Javier Fernandez Rebollo, Fernando Computer Science Department Universidad Carlos III de Madrid Avenida de la Universidad 30 28911 Leganés Madrid Spain
reinforcement learning (RL) methods are widely used for dynamic control tasks. In many cases, these are high risk tasks where the trial and error process may select actions which execution from unsafe states can be ca... 详细信息
来源: 评论
Distributed Approximate dynamic Control for Traffic Management of Busy Railway Networks
收藏 引用
ieee TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2020年 第9期21卷 3788-3798页
作者: Ghasempour, Taha Nicholson, Gemma L. Kirkwood, David Fujiyama, Taku Heydecker, Benjamin UCL Ctr Transport Studies Fac Engn Sci London WC1E 6BT England Univ Birmingham Birmingham Ctr Railway Res & Educ Birmingham B15 2TT W Midlands England
Railway operations are prone to disturbances that can rapidly propagate through large networks, causing delays and poor performance. Automated re-scheduling tools have shown the potential to limit such undesirable out... 详细信息
来源: 评论
adaptive dynamic programming for Robust Event-Driven Tracking Control of Nonlinear Systems With Asymmetric Input Constraints
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2024年 第11期54卷 6333-6344页
作者: Yang, Xiong Wei, Qinglai Tianjin Univ Sch Elect & Informat Engn Tianjin Key Lab Intelligent Unmanned Swarm Techno Tianjin 300072 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This article considers the robust dynamic event-driven tracking control problem of nonlinear systems having mismatched disturbances and asymmetric input constraints. Initially, to tackle the asymmetric constraints, a ... 详细信息
来源: 评论
Algorithm and Stability of ATC Receding Horizon Control
Algorithm and Stability of ATC Receding Horizon Control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Zhang, Hongwei Huang, Jie Lewis, Frank L. Chinese Univ Hong Kong Dept Mech & Automat Engn Shatin Hong Kong Peoples R China Univ Texas Arlingto Automat & Robot Res Inst Ft Worth TX 76118 USA
Receding horizon control (RHC), also known as model predictive control (MPC), is a suboptimal control scheme that solves a finite horizon open-loop optimal control problem in an infinite horizon context and yields a m... 详细信息
来源: 评论
A Note on State Parameterizations in Output Feedback reinforcement learning Control of Linear Systems
收藏 引用
ieee TRANSACTIONS ON AUTOMATIC CONTROL 2023年 第10期68卷 6200-6207页
作者: Rizvi, Syed Ali Asad Lin, Zongli Tennessee Technol Univ Dept Elect & Comp Engn Cookeville TN 38505 USA Univ Virginia Charles L Brown Dept Elect & Comp Engn Charlottesville VA 22904 USA
This note presents an analysis of the state parameterizations used in output feedback reinforcement learning (RL) control. Output feedback algorithms based on state parameterization involve additional conditions on th... 详细信息
来源: 评论
A Comparison of Approximate dynamic programming Techniques on Benchmark Energy Storage Problems: Does Anything Work?
A Comparison of Approximate Dynamic Programming Techniques o...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Jiang, Daniel R. Pham, Thuy V. Powell, Warren B. Salas, Daniel F. Scott, Warren R.
As more renewable, yet volatile, forms of energy like solar and wind are being incorporated into the grid, the problem of finding optimal control policies for energy storage is becoming increasingly important. These s... 详细信息
来源: 评论
Application of reinforcement learning-based algorithms in CO2 allowance and electricity markets
Application of reinforcement learning-based algorithms in CO...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Nanduri, Vishnuteja Department of Industrial and Manufacturing Engineering University of Wisconsin-Milwaukee Milwaukee WI 53211 United States
Climate change is one of the most important challenges faced by the world this century. In the U.S., the electric power industry is the largest emitter of CO2, contributing to the climate crisis. Federal emissions con... 详细信息
来源: 评论
Active learning for Classification: An Optimistic Approach
Active Learning for Classification: An Optimistic Approach
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Collet, Timothe Pietquin, Olivier Supelec MaLIS Res Grp Gif Sur Yvette France GeorgiaTech CNRS UMI 2958 Metz France Univ Lille 1 F-59655 Villeneuve Dascq France CNRS LIFL UMR 8022 Lille 1SequeL Team F-75700 Paris France Inst Univ France Paris France
In this paper, we propose to reformulate the active learning problem occurring in classification as a sequential decision making problem. We particularly focus on the problem of dynamically allocating a fixed budget o... 详细信息
来源: 评论