咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是231-240 订阅
排序:
reinforcement-learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2015年 第7期45卷 1372-1385页
作者: Liu, Derong Yang, Xiong Wang, Ding Wei, Qinglai Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivat... 详细信息
来源: 评论
adaptive Optimal Control of Continuous-Time Linear Systems via Hybrid Iteration
Adaptive Optimal Control of Continuous-Time Linear Systems v...
收藏 引用
ieee symposium Series on Computational Intelligence (ieee SSCI)
作者: Qasem, Omar Gao, Weinan Bian, Tao Florida Inst Technol Mech & Civil Engn Melbourne FL 32901 USA WorldQuant LLC Old Greenwich CT 06870 USA
In this paper, we propose a novel dynamic programming (DP) algorithm, under the name of hybrid iteration (HI), for continuous-time linear systems. The proposed HI approach combines the advantages of two well-known DP ... 详细信息
来源: 评论
Optimal Consensus Control Design for Multiagent Systems With Multiple Time Delay Using adaptive dynamic programming
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2022年 第12期52卷 12832-12842页
作者: Zhang, Huaguang Ren, He Mu, Yunfei Han, Ji Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Peoples R China
In this article, a novel data-based adaptive dynamic programming (ADP) method is presented to solve the optimal consensus tracking control problem for discrete-time (DT) multiagent systems (MASs) with multiple time de... 详细信息
来源: 评论
Safe reinforcement learning and adaptive Optimal Control With Applications to Obstacle Avoidance Problem
收藏 引用
ieee TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2024年 第3期21卷 4599-4612页
作者: Wang, Ke Mu, Chaoxu Ni, Zhen Liu, Derong Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Florida Atlantic Univ Dept Elect Engn & Comp Sci Boca Raton FL 33431 USA Southern Univ Sci & Technol Sch Syst Design & Intelligent Mfg Shenzhen 518055 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
This paper presents a novel composite obstacle avoidance control method to generate safe motion trajectories for autonomous systems in an adaptive manner. First, system safety is described using forward invariance, an... 详细信息
来源: 评论
A reinforcement learning Approach to Price Cloud Resources With Provable Convergence Guarantees
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2022年 第12期33卷 7448-7460页
作者: Xie, Hong Lui, John C. S. Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China
How to generate more revenues is crucial to cloud providers. Evidences from the Amazon cloud system indicate that ``dynamic pricing'' would be more profitable than ``static pricing.'' The challenges ar... 详细信息
来源: 评论
adaptive dynamic programming for Robust Regulation and Its Application to Power Systems
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2018年 第7期65卷 5722-5732页
作者: Yang, Xiong He, Haibo Zhong, Xiangnan Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA Univ North Texas Dept Elect Engn Denton TX 76207 USA
This paper presents a novel robust regulation method for a class of continuous-time nonlinear systems subject to unmatched perturbations. To begin with, the robust regulation problem is transformed into an optimal reg... 详细信息
来源: 评论
Event-Triggered Robust adaptive dynamic programming for Multiplayer Stackelberg-Nash Games of Uncertain Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2024年 第1期54卷 273-286页
作者: Lin, Mingduo Zhao, Bo Liu, Derong Beijing Normal Univ Sch Syst Sci Beijing 100875 Peoples R China Chongqing Univ Posts & Telecommun Minist Educ Key Lab Ind Internet Things & Networked Control Chongqing 400065 Peoples R China Southern Univ Sci & Technol Sch Syst Design & Intelligent Mfg Shenzhen 518055 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
In this article, an event-triggered robust adaptive dynamic programming (ETRADP) algorithm is developed to solve a class of multiplayer Stackelberg-Nash games (MSNGs) for uncertain nonlinear continuous-time systems. C... 详细信息
来源: 评论
A Comparison of learning Speed and Ability to Cope Without Exploration between DHP and TD(0)
A Comparison of Learning Speed and Ability to Cope Without E...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Fairbank, Michael Alonso, Eduardo City Univ London Dept Comp Sch Informat London EC1V 0HB England
This paper demonstrates the principal motivations for Dual Heuristic dynamic programming (DHP) learning methods for use in adaptive dynamic programming and reinforcement learning, in continuous state spaces: that of a... 详细信息
来源: 评论
Towards Enabling Deep learning Techniques for adaptive dynamic programming
Towards Enabling Deep Learning Techniques for Adaptive Dynam...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ni, Zhen Malla, Naresh Zhong, Xiangnan South Dakota State Univ Elect Engn & Comp Sci Dept Brookings SD 57007 USA Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA
Human-level control through deep learning and deep reinforcement learning have revealed the unique and powerful potentials through a very complex Go game. The AlphaGo, developed by Google DeepMind, has beat the top Go... 详细信息
来源: 评论
reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 2007年 第2期37卷 425-436页
作者: He, Pingan Jagannathan, S. Univ Missouri Dept Elect & Comp Engn Rolla MO 65409 USA
A novel adaptive-critic-based neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of nonlinear systems in the presence of actuator constraints. The constra... 详细信息
来源: 评论