咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是251-260 订阅
排序:
Data-Efficient Off-Policy learning for Distributed Optimal Tracking Control of HMAS With Unidentified Exosystem dynamics
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2024年 第3期35卷 3181-3190页
作者: Xu, Yong Wu, Zheng-Guang Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China Zhejiang Univ Inst Cyber Syst & Control Hangzhou 310027 Peoples R China
In this article, a data-efficient off-policy reinforcement learning (RL) approach is proposed for distributed output tracking control of heterogeneous multiagent systems (HMASs) using approximate dynamic programming (... 详细信息
来源: 评论
Cybertwin-Driven DRL-Based adaptive Transmission Scheduling for Software Defined Vehicular Networks
收藏 引用
ieee TRANSACTIONS ON VEHICULAR TECHNOLOGY 2022年 第5期71卷 4607-4619页
作者: Quan, Wei Liu, Mingyuan Cheng, Nan Zhang, Xue Gao, Deyun Zhang, Hongke Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China Peng Cheng Lab PCL Shenzhen 518040 Peoples R China Xidian Univ State Key Lab ISN Xian 710071 Peoples R China Xidian Univ Sch Telecommun Engn Xian 710071 Peoples R China
Efficient transmission control is a challenging issue in vehicular networks due to the highly dynamic and unpredictable link status. In this paper, we propose a cybertwin-driven learning-based transmission scheduling ... 详细信息
来源: 评论
ADHDP(?) Strategies based coordinated ramps metering with queuing consideration
ADHDP(?) Strategies based coordinated ramps metering with qu...
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
作者: Bai, Xuerui Zhao, Dongbin Yi, Jianqiang Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences. 95 Zhongguancun East Road. Haidian District Beijing 100080 China
Ramp metering has been developed as a traffic management strategy to alleviate congestion on freeways. Most ramp metering control algorithms are concerned without queuing consideration, because it's still a tough ... 详细信息
来源: 评论
Optimization control of UAVs based on self-learning adaptive dynamic programming  35
Optimization control of UAVs based on self-learning adaptive...
收藏 引用
35th Youth Academic Annual Conference of Chinese-Association-of-Automation (YAC)
作者: Ye, Shuai Zhou, Ying-Jiang Jiang, Guo-Ping Lin, Qiong Nanjing Univ Posts & Telecommun Dept Automat & Artificial Intelligence Nanjing 210023 Peoples R China
In UAVs, optimal control has attracted more and more attention. In this paper, a self-learning adaptive dynamic programming (ADP) architecture based reinforcement learning (RL) is proposed to obtain optimal control fo... 详细信息
来源: 评论
reinforcement learning of adaptive Longitudinal Vehicle Control for dynamic Collaborative Driving
Reinforcement Learning of Adaptive Longitudinal Vehicle Cont...
收藏 引用
ieee Intelligent Vehicles symposium
作者: Ng, Luke Clark, Christopher M. Huissoon, Jan P. Univ Waterloo Dept Mech & Mechatron Engn Waterloo ON N2L 3G1 Canada Calif Polytech State Univ San Luis Obispo Dept Comp Sci San Luis Obispo CA 93407 USA
dynamic collaborative driving involves the motion coordination of multiple vehicles using shared information from vehicles instrumented to perceive their surroundings in order to improve road usage and safety. A basic... 详细信息
来源: 评论
adaptive critic-based neurofuzzy controller for the steam generator water level
收藏 引用
ieee TRANSACTIONS ON NUCLEAR SCIENCE 2008年 第3期55卷 1678-1685页
作者: Fakhrazari, Amin Boroushaki, Mehrdad Sharif Univ Technol Dept Mech Engn Tehran Iran
In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highl... 详细信息
来源: 评论
Optimal Tracking Current Control of Switched Reluctance Motor Drives Using reinforcement Q-learning Scheduling
收藏 引用
ieee ACCESS 2021年 9卷 9926-9936页
作者: Alharkan, Hamad Saadatmand, Sepehr Ferdowsi, Mehdi Shamsi, Pourya Missouri Univ Sci & Technol Elect Engn Dept Rolla MO 65401 USA Qassim Univ Dept Elect Engn Coll Engn Unaizah 56452 Saudi Arabia
In this article, a novel Q-learning scheduling method for the current controller of a switched reluctance motor (SRM) drive is investigated. The Q-learning algorithm is a class of reinforcement learning approaches tha... 详细信息
来源: 评论
Pseudo-MDPs and factored linear action models
Pseudo-MDPs and factored linear action models
收藏 引用
2014 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2014
作者: Yao, Hengshuai Szepesvári, Csaba Pires, Bernardo Ávila Zhang, Xinhua Department of Computing Science University of Alberta EdmontonABT6G2E8 Canada Machine Learning Research Group National ICT Australia Sydney Australia
In this paper we introduce the concept of pseudo-MDPs to develop abstractions. Pseudo-MDPs relax the requirement that the transition kernel has to be a probability kernel. We show that the new framework captures many ... 详细信息
来源: 评论
Active learning for personalizing treatment
Active learning for personalizing treatment
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning
作者: Deng, Kun Pineau, Joelle Murphy, Susan Department of Statistics University of Michigan United Kingdom Department of Computer Science McGill University Canada
The personalization of treatment via genetic biomarkers and other risk categories has drawn increasing interest among clinical researchers and scientists. A major challenge here is to construct individualized treatmen... 详细信息
来源: 评论
learning Control for Air Conditioning Systems via Human Expressions
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2021年 第8期68卷 7662-7671页
作者: Wei, Qinglai Li, Tao Liu, Derong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Qingdao Acad Intelligent Ind Qingdao 266109 Peoples R China Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China
In this article, a deep reinforcement learning method is developed to solve air conditioning control problems through human expressions. The main contribution of this article is to design a deep reinforcement learning... 详细信息
来源: 评论