咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是261-270 订阅
排序:
Higher level application of ADP: A next phase for the control field?
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 2008年 第4期38卷 901-912页
作者: Lendaris, George G. Portland State Univ Dept Elect & Comp Engn NW Computat Intelligence Lab Syst Sci Grad Program Portland OR 97207 USA
Two distinguishing features of humanlike control vis-a-vis current technological control are the ability to make use of experience while selecting a control policy for distinct situations and the ability to do so fast... 详细信息
来源: 评论
reinforcement learning-Based Event-Triggered FCS-MPC for Power Converters
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2023年 第12期70卷 11841-11852页
作者: Liu, Xing Qiu, Lin Fang, Youtong Rodriguez, Jose Zhejiang Univ Coll Elect Engn Hangzhou 310027 Peoples R China Zhejiang Univ Univ Illinois Urbana Champaign Inst Hangzhou 310027 Peoples R China Univ San Sebastian Santiago Fac Engn Santiago 8420524 Chile
This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture w... 详细信息
来源: 评论
Approximate Real-Time Optimal Control Based on Sparse Gaussian Process Models
Approximate Real-Time Optimal Control Based on Sparse Gaussi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Boedecker, Joschka Springenberg, Jost Tobias Wuelfing, Jan Riedmiller, Martin Univ Freiburg Dept Comp Sci Machine Learning Lab D-79110 Freiburg Germany
In this paper we present a fully automated approach to (approximate) optimal control of non-linear systems. Our algorithm jointly learns a non-parametric model of the system dynamics - based on Gaussian Process Regres... 详细信息
来源: 评论
Bi-Level adaptive Storage Expansion Strategy for Microgrids Using Deep reinforcement learning
收藏 引用
ieee TRANSACTIONS ON SMART GRID 2024年 第2期15卷 1362-1375页
作者: Huang, Bin Zhao, Tianqiao Yue, Meng Wang, Jianhui Southern Methodist Univ Elect & Comp Engn Dept Dallas TX 75205 USA Brookhaven Natl Lab Interdisciplinary Sci Dept Upton NY 11973 USA
Battery energy storage (BES) is a versatile resource for the secure and economic operation of microgrids (MGs). Prevailing stochastic optimization-based approaches for BES expansion planning for MGs are computationall... 详细信息
来源: 评论
reinforcement learning in continuous action spaces
Reinforcement learning in continuous action spaces
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: van Hasselt, Hado Wiering, Marco A. Univ Utrecht Dept Informat & Comp Sci Intelligent Syst Grp Padualaan 14 NL-3508 TB Utrecht Netherlands
Quite some research has been done on reinforcement learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new ... 详细信息
来源: 评论
Model-based reinforcement learning in factored-state MDPs
Model-based reinforcement learning in factored-state MDPs
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Strehl, Alexander L. Rutgers State Univ Dept Comp Sci Piscataway NJ 08854 USA
We consider the problem of learning in a factored state Markov Decision Process that is structured to allow a compact representation. We show that the well-known algorithm, factored Rmax, performs near-optimally on al... 详细信息
来源: 评论
Value-Gradient learning
Value-Gradient Learning
收藏 引用
ieee International Conference on Fuzzy Systems (FUZZ-ieee)/International Joint Conference on Neural Networks (IJCNN)/ieee Congress on Evolutionary Computation (ieee-CEC)/ieee World Congress on Computational Intelligence (ieee-WCCI)
作者: Fairbank, Michael Alonso, Eduardo City Univ London Sch Informat Dept Comp London EC1V 0HB England
We describe an adaptive dynamic programming algorithm VGL(lambda) for learning a critic function over a large continuous state space. The algorithm, which requires a learned model of the environment, extends Dual Heur... 详细信息
来源: 评论
A dynamic checkpointing scheme based on reinforcement learning
A dynamic checkpointing scheme based on reinforcement learni...
收藏 引用
10th ieee Pacific Rim International symposium on Dependable Computing (PRDC 2004)
作者: Okamura, H Nishimura, Y Dohi, T Hiroshima Univ Grad Sch Engn Dept Informat Engn Higashihiroshima 7398527 Japan
In this paper, we develop a new checkpointing scheme for a uniprocess application. First, we model the checkpointing scheme by a semi-Markov decision process, and apply the reinforcement learning algorithm to estimate... 详细信息
来源: 评论
An optimal ADP algorithm for a high-dimensional stochastic control problem
An optimal ADP algorithm for a high-dimensional stochastic c...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Nascimento, Juliana Powell, Warren Princeton Univ Dept Operat Res & Financial Engn Princeton NJ 08544 USA
We propose a provably optimal approximate dynamic programming algorithm for a class of multistage stochastic problems, taking into account that the probability distribution of the underlying stochastic process is not ... 详细信息
来源: 评论
Data-Driven Zero-Sum Neuro-Optimal Control for a Class of Continuous-Time Unknown Nonlinear Systems With Disturbance Using ADP
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2016年 第2期27卷 444-458页
作者: Wei, Qinglai Song, Ruizhuo Yan, Pengfei Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China
This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effe... 详细信息
来源: 评论