咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是281-290 订阅
排序:
The effect of bootstrapping in multi-automata reinforcement learning
The effect of bootstrapping in multi-automata reinforcement ...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Peeters, Maarten Verbeeck, Katja Nowe, Ann Vrije Univ Brussel Computat Modeling Lab Pleinlaan 2 B-1050 Brussels Belgium
learning Automata are shown to be an excellent tool for creating learning multi-agent systems. Most algorithms used in current automata research expect the environment to end in an explicit end-stage. In this end-stag... 详细信息
来源: 评论
Policy Gradient adaptive Critic Design With dynamic Prioritized Experience Replay for Wastewater Treatment Process Control
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL INFORMATICS 2022年 第5期18卷 3150-3158页
作者: Yang, Ruyue Wang, Ding Qiao, Junfei Beijing Univ Beijing Key Lab Computat Intelligence & Intellige Beijing Lab Smart Environm Protect Fac Informat Technol Beijing 100124 Peoples R China Beijing Univ Technol Beijing Inst Artificial Intelligence Beijing 100124 Peoples R China
With the industrialization of modern society, the pollution of water resources becomes more and more serious. Although purifying urban sewage through the wastewater treatment plants eases the burden of fragile ecosyst... 详细信息
来源: 评论
Balancing Value Iteration and Policy Iteration for Discrete-Time Control
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2020年 第11期50卷 3948-3958页
作者: Luo, Biao Yang, Yin Wu, Huai-Ning Huang, Tingwen Cent South Univ Sch Automat Changsha 410083 Peoples R China Hamad Bin Khalifa Univ Coll Sci & Engn Doha Qatar Beihang Univ Sci & Technol Aircraft Control Lab Beijing 100191 Peoples R China Texas A&M Univ Qatar Dept Sci Doha Qatar
The optimal control problem of discrete-time nonlinear systems depends on the solution of the Bellman equation. In this paper, an adaptive reinforcement learning (RL) method is developed to solve the complex Bellman e... 详细信息
来源: 评论
A dynamic programming approach to viability problems
A dynamic programming approach to viability problems
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Coquelin, Pieffe-Amaud Martin, Sophie Munos, Reni Ecole Polytech Ctr Math Appl Palaiseau France Approximate Dynamic Programm Paris France
Viability theory considers the problem of maintaining a system under a set of viability constraints. The main tool for solving viability problems lies in the construction of he hi viability kernel, defined as the set ... 详细信息
来源: 评论
Approximate dynamic programming for Stochastic Systems with Additive and Multiplicative Noise
Approximate Dynamic Programming for Stochastic Systems with ...
收藏 引用
ieee International symposium on Intelligent Control (ISIC)/ieee Multi-Conference on Systems and Control (MSC)
作者: Jiang, Yu Jiang, Zhong-Ping NYU Polytech Inst Dept Elect & Comp Engn Brooklyn NY 11201 USA
This paper studies the stochastic optimal control problem with additive and multiplicative noise via reinforcement learning (RL) and approximate/adaptive dynamic programming (ADP). Using Ito calculus, a policy iterati... 详细信息
来源: 评论
learning-Based Predictive Control for Discrete-Time Nonlinear Systems With Stochastic Disturbances
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2018年 第12期29卷 6202-6213页
作者: Xu, Xin Chen, Hong Lian, Chuanqiang Li, Dazi Natl Univ Def Technol Coll Intelligence Sci Changsha 410073 Hunan Peoples R China Jilin Univ NanLing State Key Lab Automot Simulat & Control Changchun 130025 Jilin Peoples R China Jilin Univ NanLing Dept Control Sci & Engn Changchun 130025 Jilin Peoples R China Naval Univ Engn Natl Key Lab Sci & Technol Vessel Integrated Powe Wuhan 430032 Hubei Peoples R China Beijing Univ Chem Technol Dept Automat Beijing 100029 Peoples R China
In this paper, a learning-based predictive control (LPC) scheme is proposed for adaptive optimal control of discrete-time nonlinear systems under stochastic disturbances. The proposed LPC scheme is different from conv... 详细信息
来源: 评论
Fuzzy Control Based on reinforcement learning and Subsystem Error Derivatives for Strict-Feedback Systems With an Observer
收藏 引用
ieee TRANSACTIONS ON FUZZY SYSTEMS 2023年 第8期31卷 2509-2521页
作者: Li, Dongdong Dong, Jiuxiang Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Peoples R China Northeastern Univ Key Lab Vibrat & Control Aeroprop Syst Minist Educ China Shenyang 110819 Peoples R China Northeastern Univ Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China
In this article, a novel optimized fuzzy adaptive control method based on tracking error derivatives of subsystems is proposed for strict-feedback systems with unmeasurable states. A cost function based on the trackin... 详细信息
来源: 评论
Common framework of certain reinforcement schedules
Common framework of certain reinforcement schedules
收藏 引用
2nd ieee World Congress on Computational Intelligence (WCCI 98)
作者: Pacut, A Warsaw Univ Technol Fac Elect & Informat Technol PL-00665 Warsaw Poland
In the paper we investigate the reinforcement algorithms in a context of feedforward networks with gradient learning which use the smoothed output gradient estimators. The reduced network is introduced to avoid the ou... 详细信息
来源: 评论
A Retrospective on adaptive dynamic programming for Control
A Retrospective on Adaptive Dynamic Programming for Control
收藏 引用
International Joint Conference on Neural Networks
作者: Lendaris, George G. Portland State Univ Syst Sci Grad Program Portland OR 97201 USA
Some three decades ago, certain computational intelligence methods of reinforcement learning were recognized as implementing an approximation of Bellman's dynamic programming method, which is known in the controls... 详细信息
来源: 评论
A scalable model-free recurrent neural network framework for solving POMDPs
A scalable model-free recurrent neural network framework for...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Liu, Zhenzhen Elhanany, Itamar Univ Tennessee Dept Elect & Comp Engn Knoxville TN 37996 USA
This paper presents a framework for obtaining an optimal policy in model-free Partially Observable Markov Decision Problems (POMDPs) using a recurrent neural network (RNN). A Q-function approximation approach is taken... 详细信息
来源: 评论