咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是321-330 订阅
排序:
A recurrent control neural network for data efficient reinforcement learning
A recurrent control neural network for data efficient reinfo...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Schaefer, Anton Maximilian Udluft, Steffen Zimmermann, Hans-Georg Univ Ulm Dept Optimisat & Operat Res D-89069 Ulm Germany Corp Technol Seimens AG Dept Learning Syst Informat & Commun D-81739 Munich Germany
In this paper we introduce a new model-based approach for a data-efficient modelling and control of reinforcement learning problems in discrete time. Our architecture is based on a recurrent neural network (RNN) with ... 详细信息
来源: 评论
ADP-Based Spacecraft Attitude Control Under Actuator Misalignment and Pointing Constraints
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2022年 第9期69卷 9342-9352页
作者: Yang, Haoyang Hu, Qinglei Dong, Hongyang Zhao, Xiaowei Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China Univ Warwick Sch Engn Intelligent Control & Smart Energy ICSE Res Grp Coventry CV4 7AL W Midlands England
This article is devoted to real-time optimal attitude reorientation control of rigid spacecraft control. Particularly, two typical practical problems-actuator misalignment and forbidden pointing constraints are consid... 详细信息
来源: 评论
reinforcement control via action dependent heuristic dynamic programming
Reinforcement control via action dependent heuristic dynamic...
收藏 引用
1997 ieee International Conference on Neural Networks (ICNN 97)
作者: Tang, KW Srikant, G Department of Electrical Engineering SUNY Stony Brook NY 11794-2350 United States
Heuristic dynamic programming (HDP) is the simplest kind of adaptive Critic which is a powerful form of reinforcement control [1]. It can be used to maximize or minimize any utility function, such as total energy or t... 详细信息
来源: 评论
Hamiltonian-Driven adaptive dynamic programming Based on Extreme learning Machine  14th
收藏 引用
14th International symposium on Neural Networks (ISNN)
作者: Yang, Yongliang Wunsch, Donald Guo, Zhishan Yin, Yixin Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA Missouri Univ Sci & Technol Dept Comp Sci Rolla MO 65409 USA
In this paper, a novel frame work of reinforcement learning for continuous time dynamical system is presented based on the Hamiltonian functional and extreme learning machine. The idea of solution search in the optimi... 详细信息
来源: 评论
Offline and Online adaptive Critic Control Designs With Stability Guarantee Through Value Iteration
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2022年 第12期52卷 13262-13274页
作者: Ha, Mingming Wang, Ding Liu, Derong Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
This article is concerned with the stability of the closed-loop system using various control policies generated by value iteration. Some stability properties involving admissibility criteria, the attraction domain, an... 详细信息
来源: 评论
Coordinated reinforcement learning for decentralized optimal control
Coordinated reinforcement learning for decentralized optimal...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Yagan, Daniel Tharn, Chen-Khong Natl Univ Singapore Dept Elect & Comp Engn Singapore 117548 Singapore
We consider a multi-agent system where the overall performance is affected by the joint actions or policies of agents. However, each agent only observes a partial view of the global state condition. This model is know... 详细信息
来源: 评论
Continuous-Time reinforcement learning Control: A Review of Theoretical Results, Insights on Performance, and Needs for New Designs
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2024年 第8期35卷 10199-10219页
作者: Wallace, Brent A. Si, Jennie Arizona State Univ Dept Elect Comp & Energy Engn Tempe AZ 85287 USA
This exposition discusses continuous-time reinforcement learning (CT-RL) for the control of affine nonlinear systems. We review four seminal methods that are the centerpieces of the most recent results on CT-RL contro... 详细信息
来源: 评论
A3DQN: adaptive Anderson Acceleration for Deep Q-Networks
A3DQN: Adaptive Anderson Acceleration for Deep Q-Networks
收藏 引用
ieee symposium Series on Computational Intelligence (ieee SSCI)
作者: Ermis, Melike Yang, Insoon Seoul Natl Univ Automat & Syst Res Inst Dept Elect & Comp Engn Seoul 08826 South Korea
reinforcement learning (RL) has been used for an agent to learn efficient decision-making strategies through its interactions with an environment. However, slow convergence and sample inefficiency of RL algorithms mak... 详细信息
来源: 评论
adaptive Configuration with Deep reinforcement learning in Software-Defined Time-Sensitive Networking
Adaptive Configuration with Deep Reinforcement Learning in S...
收藏 引用
ieee/IFIP Network Operations and Management symposium (NOMS)
作者: Guo, Mengjie Shou, Guochu Liu, Yaqiong Hu, Yihong Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing Peoples R China
Time-sensitive networking (TSN) is very appealing to industrial networks due to its support for deterministic transmission based on Ethernet. The implementation of determinism typically demands for precise configurati... 详细信息
来源: 评论
Robust dynamic programming for discounted infinite-horizon Markov decision processes with uncertain stationary transition matrice
Robust dynamic programming for discounted infinite-horizon M...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Li, Baohua Si, Jennie Arizona State Univ Dept Elect Engn Tempe AZ 85287 USA
In this paper, finite-state, Saite-action, discounted infinite-horizon-cost Markov decision processes (MDPs) with uncertain stationary transition matrices are discussed in the deterministic policy space. Uncertain sta... 详细信息
来源: 评论