咨询与建议

限定检索结果

文献类型

  • 745 篇 会议
  • 266 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,015 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 708 篇 工学
    • 521 篇 计算机科学与技术...
    • 377 篇 电气工程
    • 277 篇 控制科学与工程
    • 155 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 67 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 309 篇 reinforcement le...
  • 214 篇 dynamic programm...
  • 203 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 74 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 989 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1015 条 记 录,以下是331-340 订阅
排序:
Identifying trajectory classes in dynamic tasks
Identifying trajectory classes in dynamic tasks
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Anderson, Stuart O. Srinivasa, Siddhartha S. Carnegie Mellon Univ Inst Robot 5000 Forbes Ave Pittsburgh PA 15213 USA Intel Res Pittsburgh Pittsburgh PA 15213 USA
Using domain knowledge to decompose difficult control problems is a widely used technique in robotics. Previous work has automated the process of identifying some qualitative behaviors of a system, finding a decomposi... 详细信息
来源: 评论
Development of reinforcement learning methods in control and decision making in the large scale dynamic game environments
Development of reinforcement learning methods in control and...
收藏 引用
ieee International symposium on Intelligent Control
作者: Orafa, S. Yazdanpanah, M. J. Lucas, C. Rahimikian, A. Ahmadabadi, M. Nili Univ Tehran Control & Intelligent Proc Ctr Excellence Fac Elect & Comp Engn Tehran Iran
In this paper, an analytical comparison is done between dynamic programming and reinforcement learning methods in dynamic two-player games. The emphasis is on the large number of states and actions available for each ... 详细信息
来源: 评论
Incremental Dual Heuristic dynamic programming Based Hybrid Approach for Multi-Channel Control of Unstable Tailless Aircraft
收藏 引用
ieee ACCESS 2022年 10卷 31677-31691页
作者: Li, Hangxu Sun, Liguo Tan, Wenqian Liu, Xiaoyu Dang, Weigao Beihang Univ Sch Aeronaut Sci & Engn Beijing 100191 Peoples R China
Actor-critic based online reinforcement learning control has been proved to be promising method for control of aerial vehicles. However, it is difficult to guarantee high-level success rate of initial training and to ... 详细信息
来源: 评论
dynamic optimization of the strength ratio during a terrestrial conflict
Dynamic optimization of the strength ratio during a terrestr...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Sztykgold, Alexandre Coppin, Gilles Hudry, Olivier GET ENST Bretagne LUSSI Dept CNRS TAMCICUMR 2872 Bretagne Germany GET ENST Bretagne Dept Comp Sci CNRS LTCI UMR 5141 Bretagne Germany
The aim of this study is to assist a military decision maker during his decision-making process when applying tactics on the battlefield. For that, we have decided to model the conflict by a game, on which we will see... 详细信息
来源: 评论
Approximate Nash Solutions for Multiplayer Mixed-Zero-Sum Game With reinforcement learning
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2019年 第12期49卷 2739-2750页
作者: Lv, Yongfeng Ren, Xuemei Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China
Inspired by Nash game theory, a multiplayer mixed-zero-sum (MZS) nonlinear game considering both two situations [zero-sum and nonzero-sum (NZS) Nash games] is proposed in this paper. A synchronous reinforcement learni... 详细信息
来源: 评论
adaptive Safe reinforcement learning With Full-State Constraints and Constrained Adaptation for Autonomous Vehicles
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2024年 第3期54卷 1907-1920页
作者: Zhang, Yuxiang Liang, Xiaoling Li, Dongyu Ge, Shuzhi Sam Gao, Bingzhao Chen, Hong Lee, Tong Heng Natl Univ Singapore Dept Elect & Comp Engn Singapore 117583 Singapore Natl Univ Singapore Inst Funct Intelligent Mat Singapore 117583 Singapore Natl Univ Singapore Dept Elect & Comp Engn Singapore 117576 Singapore Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China Tongji Univ Clean Energy Automot Engn Ctr Shanghai 201804 Peoples R China Tongji Univ Coll Elect & Informat Engn Shanghai 201804 Peoples R China
High-performance learning-based control for the typical safety-critical autonomous vehicles invariably requires that the full-state variables are constrained within the safety region even during the learning process. ... 详细信息
来源: 评论
Evolutionary computation on multitask reinforcement learning problems
Evolutionary computation on multitask reinforcement learning...
收藏 引用
ieee International Conference on Networking, Sensing and Control
作者: Handa, Hisashi Okayama Univ Grad Sch Nat Sci & Technol Okayama 7008530 Japan
Recently, Multitask learning, which can cope with several tasks, has attracted much attention. Multitask reinforcement learning introduced by Tanaka et al is a problem class where number of problem instances of Markov... 详细信息
来源: 评论
Value-iteration based fitted policy iteration:: learning with a single trajectory
Value-iteration based fitted policy iteration:: Learning wit...
收藏 引用
ieee International symposium on Approximate dynamic programming and reinforcement learning
作者: Antos, Andras Szepesvari, Csaba Munos, Remi Hungarian Acad Sci Comp & Automat Res Inst Kendu U 13-17 H-1111 Budapest Hungary Univ Alberta Dept Comput Sci Edmonton AB Canada
We consider batch reinforcement learning problems in continuous space, expected total discounted-reward Markovian Decision Problems when the training data is composed of the trajectory of some fixed behaviour policy. ... 详细信息
来源: 评论
Pattern Driven dynamic Scheduling Approach using reinforcement learning
Pattern Driven Dynamic Scheduling Approach using Reinforceme...
收藏 引用
ieee International Conference on Automation and Logistics
作者: Wei Yingzi Jiang Xinli Hao Pingbo Gu Kanfeng Shenyang Ligong Univ Shenyang 110168 Peoples R China Chinese Acad Sci Shenyang Inst Automat Shenyang 110016 Peoples R China
Production scheduling is critical for manufacturing system. Dispatching rules are usually applied dynamically to schedule the job in the dynamic job-shop. The paper presents an adaptive iterative scheduling algorithm ... 详细信息
来源: 评论
adaptive dynamic programming as a Theory of Sensorimotor control
Adaptive Dynamic Programming as a Theory of Sensorimotor con...
收藏 引用
ieee Signal Processing in Medicine and Biology symposium (SPMB)
作者: Jiang, Yu Jiang, Zhong-Ping NYU Control & Networks Lab Dept Elect & Comp Engn Polytech Inst Brooklyn NY 11201 USA
This paper studies the control mechanism in human arm movements from a perspective of approximate/adaptive dynamic programming (ADP). The control scheme is developed by incorporating Ito calculus with the ADP method f... 详细信息
来源: 评论