咨询与建议

限定检索结果

文献类型

  • 743 篇 会议
  • 265 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,012 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 517 篇 计算机科学与技术...
    • 376 篇 电气工程
    • 275 篇 控制科学与工程
    • 152 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 65 篇 管理学
    • 62 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 308 篇 reinforcement le...
  • 213 篇 dynamic programm...
  • 202 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 73 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 52 篇 control systems
  • 51 篇 convergence
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 43 篇 adaptive control
  • 40 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 986 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1012 条 记 录,以下是31-40 订阅
排序:
Data-Model Hybrid-Driven Safe reinforcement learning for adaptive Avoidance Control Against Unsafe Moving Zones
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2025年 PP卷 PP页
作者: Wang, Ke Mu, Chaoxu Zhang, Anguo Sun, Changyin Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Anhui Univ Sch Artificial Intelligence Hefei 230026 Peoples R China Southeast Univ Sch Automat Nanjing 210096 Peoples R China
With the gradual application of reinforcement learning (RL), safety has emerged as a paramount concern. This article presents a novel data-model hybrid-driven safe RL (SRL) scheme to address the challenge of avoidance... 详细信息
来源: 评论
Task-priority Intermediated Hierarchical Distributed Policies: reinforcement learning of adaptive Multi-robot Cooperative Transport
Task-priority Intermediated Hierarchical Distributed Policie...
收藏 引用
ieee/SICE International symposium on System Integration
作者: Yusei Naito Tomohiko Jimbo Tadashi Odashima Takamitsu Matsubara R-Frontier Division Frontier Research Center Toyota Motor Corporation Aichi Japan Graduate School of Information Science Nara Institute of Science and Technology (NAIST) Nara Japan Toyota Central R&D LABS. Inc. Aichi Japan
Multi-robot cooperative transport is crucial in logistics, housekeeping, and disaster response. However, it poses significant challenges in environments where objects of various weights are mixed and the number of rob... 详细信息
来源: 评论
LEACH-RLC: Enhancing IoT Data Transmission with Optimized Clustering and reinforcement learning
收藏 引用
ieee Internet of Things Journal 2025年
作者: Jurado-Lasso, F. Fernando Jurado, J.F. Fafoutis, Xenofon Technical University of Denmark Embedded Systems Engineering Section Dtu Compute Lyngby2800 Denmark Universidad Nacional de Colombia Sede Palmira Faculty of Engineering and Administration Department of Basic Science Palmira763531 Colombia
Wireless Sensor Networks (WSNs) play a pivotal role in enabling Internet of Things (IoT) devices with sensing and actuation capabilities. Operating in remote and resourceconstrained environments, these IoT devices fac... 详细信息
来源: 评论
Resilient Control Under Denial-of-service and Uncertainty: An adaptive dynamic programming Approach
收藏 引用
ieee Transactions on Automatic Control 2025年
作者: Gao, Weinan Jiang, Zhong-Ping Chai, Tianyou Northeastern University State Key Laboratory of Synthetical Automation for Process Industries Shenyang110819 China New York University Department of Electrical and Computer Engineering Tandon School of Engineering BrooklynNY11201 United States
In this paper, a new framework for the resilient control of continuous-time linear systems under denial-of-service (DoS) attacks and system uncertainty is presented. Integrating techniques from reinforcement learning ... 详细信息
来源: 评论
reinforcement learning-Based Fault-Tolerant Control of Uncertain Strict-Feedback Nonlinear Systems With Intermittent Actuator Faults
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2025年
作者: Yang, Qinmin Li, Huaying Ruan, Zhengwei Fan, Bo Sam Ge, Shuzhi Zhejiang Univ Coll Control Sci & Engn State Key Lab Ind Control Technol Hangzhou 310027 Peoples R China Hangzhou Huawei Commun Technol Co Ltd Hangzhou 310027 Peoples R China Xi An Jiao Tong Univ Sch Automat Sci & Engn Xian 710049 Peoples R China Natl Univ Singapore Inst Funct Intelligent Mat Dept Elect & Comp Engn Singapore 117583 Singapore
In this work, a novel reinforcement learning-based adaptive fault-tolerant control (FTC) scheme with actuator redundancy is presented for a nonlinear strict-feedback system with nonlinear dynamics and uncertainties. A... 详细信息
来源: 评论
Q-learning-Based adaptive Defense Mechanism for Connected Autonomous Vehicles
Q-Learning-Based Adaptive Defense Mechanism for Connected Au...
收藏 引用
ieee Southeastcon
作者: Izison Benibo Jagruti Sahoo Judith Mwakalonge Nana Kankam Gyimah Gurcan Comert Biswajit Biswal Nikunja Swain South Carolina State University Orangeburg South Carolina US North Carolina A&T University Greensboro North Carolina US
Connected Autonomous Vehicles (CAVs) are poised to operate alongside human-driven vehicles in mixed autonomy scenarios. However, their reliance on advanced software systems introduces significant cybersecurity vulnera... 详细信息
来源: 评论
Machine learning-Based Resource Allocation in 6G Integrated Space and Terrestrial Networks-Aided Intelligent Autonomous Transportation
收藏 引用
ieee Transactions on Intelligent Transportation Systems 2025年
作者: Prabhashana, Sasinda C. Huynh, Dang Van Singh, Keshav Zepernick, Hans-Jürgen Dobre, Octavia A. Shin, Hyundong Duong, Trung Q. Memorial University St. John’sNLA1C 5S7 Canada National Sun Yat-sen University Kaohsiung804 Taiwan Blekinge Institute of Technology Karlskrona37179 Sweden Kyung Hee University Korea Republic of Queen’s University Belfast BelfastBT7 1NN United Kingdom
The integration of terrestrial and non-terrestrial networks with mobile edge computing (MEC) and orbital edge computing (OEC) technologies is essential for advancing 6G communication networks. This paper introduces a ... 详细信息
来源: 评论
PDP: Parallel dynamic programming
收藏 引用
ieee/CAA Journal of Automatica Sinica 2017年 第1期4卷 1-5页
作者: Fei-Yue Wang Jie Zhang Qinglai Wei Xinhu Zheng Li Li IEEE State Key Laboratory of Management and Control for Complex Systems(SKL-MCCS) Institute of AutomationChinese Academy of Sciences(CASIA) School of Computer and Control Engineering University of Chinese Academy of Sciences Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of Sciences(SKL-MCCSCASIA) Qingdao Academy of Intelligent Industries Department of Computer Science and Engineering University of Minnesota Department of Automation Tsinghua University
Deep reinforcement learning is a focus research area in artificial intelligence. The principle of optimality in dynamic programming is a key to the success of reinforcement learning methods. The principle of adaptive ... 详细信息
来源: 评论
Exploring the Relationship of Reward and Punishment in reinforcement learning Evolving Action Meta-learning Functions in Goal Navigation
Exploring the Relationship of Reward and Punishment in Reinf...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lowe, Robert Ziemke, Tom Univ Skovde Interact Lab Skovde Sweden
We present a reinforcement learning algorithm based on Dyna-Sarsa that utilizes separate representations of reward and punishment when guiding state-action value learning and action selection. The adoption of policy m... 详细信息
来源: 评论
Special issue on adaptive dynamic programming and reinforcement learning in feedback control
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 2008年 第4期38卷 896-897页
作者: Lewis, F. L. Liu, Derong Lendaris, George G. Univ Texas Arlington Dept Elect Engn Automat & Robot Res Inst Arlington TX 76019 USA Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA Portland State Univ Dept Elect & Comp Engn Syst Sci Grad Program Portland OR 97207 USA
The 18 papers in this special issue focus on adaptive dynamic programming and reinforcement learning in feedback control.
来源: 评论