咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是441-450 订阅
Optimal Fault-Tolerant Control for Discrete-Time Nonlinear Strict-Feedback Systems Based on adaptive Critic Design
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2018年 第6期29卷 2179-2191页
作者: Wang, Zhanshan Liu, Lei Wu, Yanming Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Liaoning Peoples R China State Key Lab Synthet Automat Proc Ind Shenyang 110819 Liaoning Peoples R China Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Liaoning Peoples R China Liaoning Univ Technol Coll Sci Jinzhou 121001 Peoples R China
This paper investigates the problem of optimal fault-tolerant control (FTC) for a class of unknown nonlinear discrete-time systems with actuator fault in the framework of adaptive critic design (ACD). A pivotal highli... 详细信息
来源: 评论
Development of reinforcement learning Algorithm for 2-DOF Helicopter Model  27
Development of Reinforcement Learning Algorithm for 2-DOF He...
收藏 引用
27th ieee International symposium on Industrial Electronics, ISIE 2018
作者: Fandel, Andrew Birge, Anthony Miah, Suruz Department Bradley University Electrical and Computer Engineering PeoriaIL United States
This paper examines a reinforcement learning strategy for controlling a two degree-of-freedom (2-DOF) helicopter. The pitch and yaw angles are regulated to their corresponding reference angles by applying appropriate ... 详细信息
来源: 评论
reinforcement learning Solution with Costate Approximation for a Flexible Wing Aircraft  23
Reinforcement Learning Solution with Costate Approximation f...
收藏 引用
ieee International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)
作者: Abouheaf, Mohammed Gueaieb, Wail Univ Ottawa Sch Elect Engn & Comp Sci Ottawa ON Canada
An online adaptive learning approach based on costate function approximation is developed to solve an optimal control problem in real time. The proposed approach tackles the main concerns associated with the classical... 详细信息
来源: 评论
Special Issue on Deep reinforcement learning and adaptive dynamic programming
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2018年 第6期29卷 2038-2041页
作者: Zhao, Dongbin Liu, Derong Lewis, F. L. Principe, Jose C. Squartini, Stefano Chinese Acad Sci Inst Automat Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Univ Arizona Tucson AZ USA IEEE Computat Intelligence Soc Adapt Dynam Programming & Reinforcement Learning Piscataway NJ USA IEEE Computat Intelligence Soc Multimedia Subcomm Piscataway NJ USA Beijing Chapter Beijing Peoples R China Univ Illinois Elect & Comp Engn & Comp Sci Chicago IL USA Int Neural Network Soc Hoffman Estates IL USA Int Assoc Pattern Recognit Hoffman Estates IL USA Inst Automat State Key Lab Management & Control Complex Syst Beijing Peoples R China Nanjing Univ Sci & Technol Nanjing Jiangsu Peoples R China Northeastern Univ Shenyang Liaoning Peoples R China Natl Acad Inventors Tampa FL USA IFAC Geneva Switzerland PE Texas UK Inst Measurement & Control Austin TX USA Univ Texas Arlington Arlington TX 76019 USA Univ Florida Elect & Comp Engn & Biomed Engn Gainesville FL USA Univ Florida ECE Gainesville FL USA Univ Florida Computat NeuroEngn Lab CNEL Gainesville FL USA Univ Florida Advisory Board Inst Brain Gainesville FL USA IEEE Signal Proc Soc Tech Comm Neural Networks Piscataway NJ USA UnivPM Dept Informat Engn Elect Circuit Theory Ancona Italy UnivPM Ancona Italy
In the first issue of Nature 2015, Google DeepMind published a paper “Human-level control through deep reinforcement learning.” Furthermore, in the first issue of Nature 2016, it published a cover paper “Master... 详细信息
来源: 评论
PDP: Parallel dynamic programming
收藏 引用
ieee/CAA Journal of Automatica Sinica 2017年 第1期4卷 1-5页
作者: Fei-Yue Wang Jie Zhang Qinglai Wei Xinhu Zheng Li Li IEEE State Key Laboratory of Management and Control for Complex Systems(SKL-MCCS) Institute of AutomationChinese Academy of Sciences(CASIA) School of Computer and Control Engineering University of Chinese Academy of Sciences Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of Sciences(SKL-MCCSCASIA) Qingdao Academy of Intelligent Industries Department of Computer Science and Engineering University of Minnesota Department of Automation Tsinghua University
Deep reinforcement learning is a focus research area in artificial intelligence. The principle of optimality in dynamic programming is a key to the success of reinforcement learning methods. The principle of adaptive ... 详细信息
来源: 评论
A Summary on Some Typical adaptive dynamic programming Schemes  37
A Summary on Some Typical Adaptive Dynamic Programming Schem...
收藏 引用
37th Chinese Control Conference (CCC)
作者: Zhao, Qian Mu, Chaoxu Liu, Weiqiang Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Southeast Univ Sch Automat Nanjing 210096 Jiangsu Peoples R China
This paper sums up four typical schemes of adaptive dynamic programming (ADP). The diagrams are provided and the algorithms of various schemes are described, which is convenient for comparison. Some schemes in this pa... 详细信息
来源: 评论
Decentralized Control for Large-Scale Nonlinear Systems With Unknown Mismatched Interconnections via Policy Iteration
收藏 引用
ieee TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2018年 第10期48卷 1725-1735页
作者: Zhao, Bo Wang, Ding Shi, Guang Liu, Derong Li, Yuanchun Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Changchun Univ Technol Dept Control Sci & Engn Changchun 130012 Jilin Peoples R China
In this paper, the decentralized control problem is solved based on a policy iteration algorithm for large-scale nonlinear systems with unknown mismatched interconnections. The unknown interconnection is approximated ... 详细信息
来源: 评论
Applying Expectation-Maximization Evaluation on Approximate Optimal Control  12
Applying Expectation-Maximization Evaluation on Approximate ...
收藏 引用
12th Annual ieee International Systems Conference (SYSCON)
作者: Zhang, Songtao Dubay, Rickey Univ New Brunswick Dept Mech Engn Fredericton NB Canada
In this paper we proposed an approach of approximating optimal tracking via expectation-maximization (EM) evaluation. From the discussion of applying reinforcement learning (RL) for a system with unknown internal dyna... 详细信息
来源: 评论
Longitudinal dynamic versus Kinematic Models for Car-Following Control Using Deep reinforcement learning
Longitudinal Dynamic versus Kinematic Models for Car-Followi...
收藏 引用
International Conference on Intelligent Transportation
作者: Yuan Lin John McPhee Nasser L. Azad Systems Design Engineering Department University of Waterloo Ontario Canada
The majority of current studies on autonomous vehicle control via deep reinforcement learning (DRL) utilize point-mass kinematic models, neglecting vehicle dynamics which includes acceleration delay and acceleration c... 详细信息
来源: 评论
adaptive Assist-as-needed Control Based on Actor-Critic reinforcement learning
Adaptive Assist-as-needed Control Based on Actor-Critic Rein...
收藏 引用
2019 ieee/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yufeng Zhang Shuai Li Karen J. Nolan Damiano Zanotto Wearable Robotics Systems (WRS) Lab. Stevens Institute of Technology Hoboken NJ USA Human Performance and Engineering Research Kessler Foundation West Orange NJ USA
In robot-assisted rehabilitation, assist-as-needed (AAN) controllers have been proposed to promote subjects' active participation, which is thought to lead to better training outcomes. Most of these AAN controller...
来源: 评论