咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是461-470 订阅
Data-Driven Optimal Consensus Control for Discrete-Time Multi-Agent Systems With Unknown dynamics Using reinforcement learning Method
收藏 引用
ieee TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2017年 第5期64卷 4091-4100页
作者: Zhang, Huaguang Jiang, He Luo, Yanhong Xiao, Geyang Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Peoples R China
This paper investigates the optimal consensus control problem for discrete-time multi-agent systems with completely unknown dynamics by utilizing a data-driven reinforcement learning method. It is known that the optim... 详细信息
来源: 评论
15th International symposium on Neural Networks, ISNN 2018
15th International Symposium on Neural Networks, ISNN 2018
收藏 引用
15th International symposium on Neural Networks, ISNN 2018
The proceedings contain 97 papers. The special focus in this conference is on Neural Networks. The topics include: Development of a sensory-neural network for medical diagnosing;review of pseudoinverse learning algori...
来源: 评论
adaptive Critic Nonlinear Robust Control: A Survey
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2017年 第10期47卷 3429-3451页
作者: Wang, Ding He, Haibo Liu, Derong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Comp & Control Engn Beijing 100049 Peoples R China Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA Guangdong Univ Technol Sch Automat Guangzhou 510006 Guangdong Peoples R China
adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of ev... 详细信息
来源: 评论
Discrete-Time Generalized Policy Iteration ADP Algorithm With Approximation Errors
Discrete-Time Generalized Policy Iteration ADP Algorithm Wit...
收藏 引用
ieee symposium Series on Computational Intelligence (ieee SSCI)
作者: Wei, Qinglai Li, Benkai Song, Ruizhuo Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing Peoples R China Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing Peoples R China
This paper concerns with a novel generalized policy iteration (GPI) algorithm with approximation errors. Approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm ... 详细信息
来源: 评论
Discrete-Time Nonzero-Sum Games for Multiplayer Using Policy-Iteration-Based adaptive dynamic programming Algorithms
收藏 引用
ieee TRANSACTIONS ON CYBERNETICS 2017年 第10期47卷 3331-3340页
作者: Zhang, Huaguang Jiang, He Luo, Chaomin Xiao, Geyang Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China Univ Detroit Mercy Dept Elect & Comp Engn Detroit MI 48221 USA
In this paper, we investigate the nonzero-sum games for a class of discrete-time (DT) nonlinear systems by using a novel policy iteration (PI) adaptive dynamic programming (ADP) method. The main idea of our proposed P... 详细信息
来源: 评论
Off-Policy Integral reinforcement learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2017年 第3期28卷 704-713页
作者: Song, Ruizhuo Lewis, Frank L. Wei, Qinglai Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Univ Texas Arlington UTA Res Inst Arlington TX 76019 USA Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain ... 详细信息
来源: 评论
Towards Enabling Deep learning Techniques for adaptive dynamic programming
Towards Enabling Deep Learning Techniques for Adaptive Dynam...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ni, Zhen Malla, Naresh Zhong, Xiangnan South Dakota State Univ Elect Engn & Comp Sci Dept Brookings SD 57007 USA Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA
Human-level control through deep learning and deep reinforcement learning have revealed the unique and powerful potentials through a very complex Go game. The AlphaGo, developed by Google DeepMind, has beat the top Go... 详细信息
来源: 评论
Development of reinforcement learning Algorithm for 2-DOF Helicopter Model
Development of Reinforcement Learning Algorithm for 2-DOF He...
收藏 引用
ieee International symposium on Industrial Electronics (ISIE)
作者: Andrew Fandel Anthony Birge Suruz Miah Electrical and Computer Engineering Department Bradley University Peoria Illinois USA
This paper examines a reinforcement learning strategy for controlling a two degree-of-freedom (2-DOF) helicopter. The pitch and yaw angles are regulated to their corresponding reference angles by applying appropriate ... 详细信息
来源: 评论
Manifold-Based reinforcement learning via Locally Linear Reconstruction
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2017年 第4期28卷 934-947页
作者: Xu, Xin Huang, Zhenhua Zuo, Lei He, Haibo Natl Univ Def Technol Coll Mechatron & Automat Changsha 410073 Hunan Peoples R China Univ Rhode Isl Dept Elect Comp & Biomed Engn Kingston RI 02881 USA
Feature representation is critical not only for pattern recognition tasks but also for reinforcement learning (RL) methods to solve learning control problems under uncertainties. In this paper, a manifold-based RL app... 详细信息
来源: 评论
Hamiltonian-Driven adaptive dynamic programming Based on Extreme learning Machine  14th
收藏 引用
14th International symposium on Neural Networks (ISNN)
作者: Yang, Yongliang Wunsch, Donald Guo, Zhishan Yin, Yixin Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA Missouri Univ Sci & Technol Dept Comp Sci Rolla MO 65409 USA
In this paper, a novel frame work of reinforcement learning for continuous time dynamical system is presented based on the Hamiltonian functional and extreme learning machine. The idea of solution search in the optimi... 详细信息
来源: 评论