咨询与建议

限定检索结果

文献类型

  • 743 篇 会议
  • 265 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,012 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 517 篇 计算机科学与技术...
    • 376 篇 电气工程
    • 275 篇 控制科学与工程
    • 152 篇 软件工程
    • 79 篇 信息与通信工程
    • 39 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 5 篇 土木工程
    • 4 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 119 篇 理学
    • 99 篇 数学
    • 33 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 65 篇 管理学
    • 62 篇 管理科学与工程(可...
    • 15 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 教育学
  • 2 篇 医学

主题

  • 308 篇 reinforcement le...
  • 213 篇 dynamic programm...
  • 202 篇 optimal control
  • 105 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 87 篇 neural networks
  • 73 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 52 篇 control systems
  • 51 篇 convergence
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 43 篇 adaptive control
  • 40 篇 artificial neura...
  • 40 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 12 篇 northeastern uni...
  • 12 篇 guangdong univ t...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 6 篇 beijing univ tec...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 21 篇 xu xin
  • 21 篇 wang ding
  • 19 篇 jiang zhong-ping
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 lewis frank l.
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 11 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 9 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 986 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1012 条 记 录,以下是41-50 订阅
排序:
Optimal control for a class of nonlinear systems with state delay based on adaptive dynamic programming with ε-error bound
Optimal control for a class of nonlinear systems with state ...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Cao, Nuyun Lin, Yuzhang Guangxi Univ Sch Elect Engn Nanning 530004 Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
In this paper, a finite-horizon epsilon-optimal control for a class of nonlinear systems with state delay is proposed by adaptive dynamic programming (ADP) algorithm. First of all, the performance index function is de... 详细信息
来源: 评论
Finite-Horizon Optimal Control Design for Uncertain Linear Discrete-time Systems
Finite-Horizon Optimal Control Design for Uncertain Linear D...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Zhao, Qiming Xu, Hao Jagannathan, S. Missouri Univ S&T Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, the finite-horizon optimal adaptive control design for linear discrete-time systems with unknown system dynamics by using adaptive dynamic programming (ADP) is presented. In the presence of full state f... 详细信息
来源: 评论
Exponential Moving Average Q-learning Algorithm
Exponential Moving Average Q-Learning Algorithm
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Awheda, Mostafa D. Schwartz, Howard M. Carleton Univ Dept Syst & Comp Engn Ottawa ON K1S 5B6 Canada
A multi-agent policy iteration learning algorithm is proposed in this work. The Exponential Moving Average (EMA) mechanism is used to update the policy for a Q-learning agent so that it converges to an optimal policy ... 详细信息
来源: 评论
adaptive Optimal Control for Nonlinear Discrete-Time Systems
Adaptive Optimal Control for Nonlinear Discrete-Time Systems
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Qin, Chunbin Zhang, Huaguang Luo, Yanhong Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Peoples R China
This paper proposes an on-line near-optimal control scheme based on capabilities of neural networks (NNs), in function approximation, to attain the on-line solution of optimal control problem for nonlinear discrete-ti... 详细信息
来源: 评论
reinforcement learning and adaptive dynamic programming for Feedback Control
收藏 引用
ieee CIRCUITS AND SYSTEMS MAGAZINE 2009年 第3期9卷 32-50页
作者: Lewis, Frank L. Vrabie, Draguna Univ Texas Arlington Automat & Robot Res Inst Arlington TX USA S China Univ Technol Guangzhou Guangdong Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China
Living organisms learn by acting on their environment, observing the resulting reward stimulus, and adjusting their actions accordingly to improve the reward. This action-based or reinforcement learning can capture no... 详细信息
来源: 评论
Finite Horizon Stochastic Optimal Control of Uncertain Linear Networked Control System
Finite Horizon Stochastic Optimal Control of Uncertain Linea...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Xu, Hao Jagannathan, S. Missouri Univ Sci & Technol Dept Elect & Comp Engn Rolla MO 65409 USA
In this paper, finite horizon stochastic optimal control issue has been studied for linear networked control system (LNCS) in the presence of network imperfections such as network-induced delays and packet losses by u... 详细信息
来源: 评论
Free Energy based Policy Gradients
Free Energy based Policy Gradients
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Theodorou, Evangelos A. Najemnik, Jiri Todorov, Emo Univ Washington Dept Comp Sci & Engn Seattle WA 98195 USA Univ Washington Dept Appl Math Seattle WA 98195 USA
Despite the plethora of reinforcement learning algorithms in machine learning and control, the majority of the work in this area relies on discrete time formulations of stochastic dynamics. In this work we present a n... 详细信息
来源: 评论
A reinforcement learning algorithm developed to model GenCo strategic bidding behavior in multidimensional and continuous state and action spaces
A reinforcement learning algorithm developed to model GenCo ...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lau, Alfred Yong Fu Srinivasan, Dipti Reindl, Thomas Natl Univ Singapore Dept Elect Comp Engn 4 Engn Dr 3 Singapore 117576 Singapore Natl Univ Singapore Solar Energy Res Inst Singapore 117574 Singapore
The electricity market have provided a complex economic environment, and consequently have increased the requirement for advancement of learning methods. In the agent-based modeling and simulation framework of this ec... 详细信息
来源: 评论
reinforcement learning in the Game of Othello: learning Against a Fixed Opponent and learning from Self-Play
Reinforcement Learning in the Game of Othello: Learning Agai...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: van der Ree, Michiel Wiering, Marco Univ Groningen Inst Artificial Intelligence & Cognit Engn Fac Math & Nat Sci NL-9700 AB Groningen Netherlands
This paper compares three strategies in using reinforcement learning algorithms to let an artificial agent learn to play the game of Othello. The three strategies that are compared are: learning by self-play, learning... 详细信息
来源: 评论
An Integrated Design for Intensified Direct Heuristic dynamic programming
An Integrated Design for Intensified Direct Heuristic Dynami...
收藏 引用
4th ieee International symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Luo, Xiong Si, Jennie Zhou, Yuchao Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China Arizona State Univ Dept Elect Engn Tempe AZ 85287 USA
There has been a growing interest in the study of adaptive/approximate dynamic programming (ADP) in recent years. The ADP technique provides a powerful tool to understand and improve the principled technologies of mac... 详细信息
来源: 评论