咨询与建议

限定检索结果

文献类型

  • 746 篇 会议
  • 270 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,020 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 711 篇 工学
    • 520 篇 计算机科学与技术...
    • 380 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 312 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 12 篇 derong liu
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 994 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1020 条 记 录,以下是531-540 订阅
排序:
CloudAware: Towards Context-adaptive Mobile Cloud Computing  14
CloudAware: Towards Context-adaptive Mobile Cloud Computing
收藏 引用
IFIP/ieee International symposium on Integrated Network Management (IM)
作者: Orsini, Gabriel Bade, Dirk Lamersdorf, Winfried Univ Hamburg Dept Comp Sci Distributed Syst Grp Hamburg Germany
The widespread use of mobile devices such as smartphones and tablets is flanked by an ever increasing supply of mobile applications. Along with this trend, expectations and requirements of users rise as well. For exam... 详细信息
来源: 评论
Infinite Horizon Self-learning Optimal Control of Nonaffine Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2015年 第4期26卷 866-879页
作者: Wei, Qinglai Liu, Derong Yang, Xiong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
In this paper, a novel iterative adaptive dynamic programming (ADP)-based infinite horizon self-learning optimal control algorithm, called generalized policy iteration algorithm, is developed for nonaffine discrete-ti... 详细信息
来源: 评论
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009 - Proceedings
2009 IEEE Symposium on Adaptive Dynamic Programming and Rein...
收藏 引用
2009 ieee symposium on adaptive dynamic programming and reinforcement learning, ADPRL 2009
The proceedings contain 34 papers. The topics discussed include: a unified framework for temporal difference methods;efficient data reuse in value function approximation;constrained optimal control of affine nonlinear...
来源: 评论
A Data-based Online reinforcement learning Algorithm with High-efficient Exploration
A Data-based Online Reinforcement Learning Algorithm with Hi...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Zhu, Yuanheng Zhao, Dongbin Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing Peoples R China
An online reinforcement learning algorithm is proposed in this paper to directly utilizes online data efficiently for continuous deterministic systems without system parameters. The dependence on some specific approxi... 详细信息
来源: 评论
adaptive dynamic programming-based optimal tracking control for nonlinear systems using general value iteration
Adaptive dynamic programming-based optimal tracking control ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lin, Xiaofeng Ding, Qiang Kong, Weikai Song, Chunning Huang, Qingbao Guangxi Univ Sch Elect Engn Nanning Peoples R China
For the optimal tracking control problem of affine nonlinear systems, a general value iteration algorithm based on adaptive dynamic programming is proposed in this paper. By system transformation, the optimal tracking... 详细信息
来源: 评论
Model-Based Multi-Objective reinforcement learning
Model-Based Multi-Objective Reinforcement Learning
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Wiering, Marco A. Withagen, Maikel Drugan, Madalina M. Univ Groningen Inst Artificial Intelligence NL-9700 AB Groningen Netherlands Vrije Univ Brussel Artificial Intelligence Lab Ixelles Brunei
This paper describes a novel multi-objective reinforcement learning algorithm. The proposed algorithm first learns a model of the multi-objective sequential decision making problem, after which this learned model is u... 详细信息
来源: 评论
An adaptive dynamic programming Algorithm to Solve Optimal Control of Uncertain Nonlinear Systems
An Adaptive Dynamic Programming Algorithm to Solve Optimal C...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Cui, Xiaohong Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an approximate optimal control method based on adaptive dynamic programming(ADP) is discussed for completely unknown nonlinear system. An online critic-action-identifier algorithm is developed using neu... 详细信息
来源: 评论
adaptive dynamic programming for Discrete-time LQR Optimal Tracking Control Problems with Unknown dynamics
Adaptive Dynamic Programming for Discrete-time LQR Optimal T...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Liu, Yang Luo, Yanhong Zhang, Huaguang Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China
In this paper, an optimal tracking control approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for unknown discrete-time systems in an onl... 详细信息
来源: 评论
Convergent reinforcement learning Control with Neural Networks and Continuous Action Search
Convergent Reinforcement Learning Control with Neural Networ...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Lee, Minwoo Anderson, Charles W. Colorado State Univ Dept Comp Sci Ft Collins CO 80523 USA
We combine a convergent TD-learning method and direct continuous action search with neural networks for function approximation to obtain both stability and generalization over inexperienced state-action pairs. We exte... 详细信息
来源: 评论
On-policy Q-learning for adaptive Optimal Control
On-policy Q-learning for Adaptive Optimal Control
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Jha, Sumit Kumar Bhasin, Shubhendu Indian Inst Technol Dept Elect Engn New Delhi 110016 India
This paper presents a novel on-policy Q-learning approach for finding the optimal control policy online for continuous-time linear time invariant (LTI) systems with completely unknown dynamics. The proposed result est... 详细信息
来源: 评论