咨询与建议

限定检索结果

文献类型

  • 748 篇 会议
  • 271 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,023 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 712 篇 工学
    • 520 篇 计算机科学与技术...
    • 381 篇 电气工程
    • 278 篇 控制科学与工程
    • 153 篇 软件工程
    • 79 篇 信息与通信工程
    • 40 篇 交通运输工程
    • 23 篇 仪器科学与技术
    • 20 篇 机械工程
    • 9 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 石油与天然气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 安全科学与工程
  • 118 篇 理学
    • 98 篇 数学
    • 32 篇 系统科学
    • 22 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 8 篇 物理学
    • 4 篇 化学
  • 66 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 313 篇 reinforcement le...
  • 216 篇 dynamic programm...
  • 206 篇 optimal control
  • 107 篇 adaptive dynamic...
  • 104 篇 adaptive dynamic...
  • 97 篇 learning
  • 88 篇 neural networks
  • 78 篇 heuristic algori...
  • 68 篇 reinforcement le...
  • 58 篇 learning (artifi...
  • 54 篇 nonlinear system...
  • 53 篇 convergence
  • 51 篇 control systems
  • 51 篇 mathematical mod...
  • 48 篇 approximate dyna...
  • 44 篇 approximation al...
  • 43 篇 equations
  • 42 篇 adaptive control
  • 41 篇 artificial neura...
  • 41 篇 cost function

机构

  • 41 篇 chinese acad sci...
  • 27 篇 univ rhode isl d...
  • 17 篇 tianjin univ sch...
  • 16 篇 univ sci & techn...
  • 16 篇 univ illinois de...
  • 15 篇 northeastern uni...
  • 14 篇 beijing normal u...
  • 13 篇 northeastern uni...
  • 13 篇 guangdong univ t...
  • 12 篇 northeastern uni...
  • 9 篇 natl univ def te...
  • 8 篇 ieee
  • 8 篇 univ chinese aca...
  • 7 篇 univ chinese aca...
  • 7 篇 cent south univ ...
  • 7 篇 southern univ sc...
  • 7 篇 beijing univ tec...
  • 6 篇 chinese acad sci...
  • 6 篇 missouri univ sc...
  • 5 篇 nanjing univ pos...

作者

  • 54 篇 liu derong
  • 37 篇 wei qinglai
  • 29 篇 he haibo
  • 22 篇 wang ding
  • 21 篇 xu xin
  • 19 篇 jiang zhong-ping
  • 17 篇 lewis frank l.
  • 17 篇 yang xiong
  • 17 篇 zhang huaguang
  • 17 篇 ni zhen
  • 16 篇 zhao bo
  • 15 篇 gao weinan
  • 14 篇 zhao dongbin
  • 13 篇 derong liu
  • 13 篇 zhong xiangnan
  • 12 篇 si jennie
  • 10 篇 jagannathan s.
  • 10 篇 dongbin zhao
  • 10 篇 song ruizhuo
  • 9 篇 abouheaf mohamme...

语言

  • 992 篇 英文
  • 25 篇 其他
  • 6 篇 中文
检索条件"任意字段=IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning"
1023 条 记 录,以下是551-560 订阅
排序:
Policy Iteration adaptive dynamic programming Algorithm for Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2014年 第3期25卷 621-634页
作者: Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterativ... 详细信息
来源: 评论
A Novel Iterative θ-adaptive dynamic programming for Discrete-Time Nonlinear Systems
收藏 引用
ieee TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2014年 第4期11卷 1176-1190页
作者: Wei, Qinglai Liu, Derong Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China
This paper is concerned with a new iterative theta-adaptive dynamic programming (ADP) technique to solve optimal control problems of infinite horizon discrete-time nonlinear systems. The idea is to use an iterative AD... 详细信息
来源: 评论
Optimal Self-learning Battery Control in Smart Residential Grids by Iterative Q-learning Algorithm
Optimal Self-Learning Battery Control in Smart Residential G...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Wei, Qinglai Liu, Derong Shi, Guang Liu, Yu Guan, Qiang Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100864 Peoples R China Chinese Acad Sci Inst Automat Beijing 100864 Peoples R China
In this paper, a novel dual iterative Q-learning algorithm is developed to solve the optimal battery management and control problems in smart residential environments. The main idea is to use adaptive dynamic programm... 详细信息
来源: 评论
Tunable and Generic Problem Instance Generation for Multi-objective reinforcement learning
Tunable and Generic Problem Instance Generation for Multi-ob...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Garrett, Deon Bieger, Jordi Throisson, Kristinn R. Reykjavik Univ Iceland Inst Intelligent Machines Reykjavik Iceland Reykjavik Univ Reykjavik Iceland
A significant problem facing researchers in reinforcement learning, and particularly in multi-objective learning, is the dearth of good benchmarks. In this paper, we present a method and software tool enabling the cre... 详细信息
来源: 评论
Using Approximate dynamic programming for Estimating the Revenues of a Hydrogen-based High-Capacity Storage Device
Using Approximate Dynamic Programming for Estimating the Rev...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Francois-Lavet, Vincent Fonteneau, Raphael Ernst, Damien Univ Liege Dept Elect Engn & Comp Sci B-4000 Liege Belgium
This paper proposes a methodology to estimate the maximum revenue that can be generated by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead electricity market. The met... 详细信息
来源: 评论
adaptive Fault Identification for a Class of Nonlinear dynamic Systems
Adaptive Fault Identification for a Class of Nonlinear Dynam...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Wu, Li-Bing Ye, Dan Zhao, Xin-Gang Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China Univ Sci & Technol Liaoning Coll Sci Anshan 114051 Liaoning Peoples R China Chinese Acad Sci State Key Lab Robot Shenyang 110016 Liaoning Peoples R China Chinese Acad Sci Shenyang Inst Automat Shenyang 110016 Liaoning Peoples R China
This paper is concerned with the diagnosis problem of actuator faults for a class of nonlinear systems. It is assumed that the upper bound of the Lipschtiz constant of the nonlinearity in the faulty system is unknown.... 详细信息
来源: 评论
Cognitive Control in Cognitive dynamic Systems: A New Way of Thinking Inspired by The Brain
Cognitive Control in Cognitive Dynamic Systems: A New Way of...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Haykin, Simon Amiri, Ashkan Fatemi, Mehdi McMaster Univ Cognit Syst Lab Hamilton ON L8S 4K1 Canada
Briefly, main purpose of the paper is fourfold: a) Cognitive perception, which consists of two functional blocks: improved sparse-coding under the influence of perceptual attention for extracting relevant information ... 详细信息
来源: 评论
Heuristics for Multiagent reinforcement learning in Decentralized Decision Problems
Heuristics for Multiagent Reinforcement Learning in Decentra...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Allen, Martin W. Hahn, David MacFarland, Douglas C. Univ Wisconsin Dept Comp Sci La Crosse WI 54601 USA
Decentralized partially observable Markov decision processes (Dec-POMDPs) model cooperative multiagent scenarios, providing a powerful general framework for team-based artificial intelligence. While optimal algorithms... 详细信息
来源: 评论
Accelerated Gradient Temporal Difference learning Algorithms
Accelerated Gradient Temporal Difference Learning Algorithms
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Meyer, Dominik Degenne, Remy Omrane, Ahmed Shen, Hao Tech Univ Munich Inst Data Proc D-80290 Munich Germany
In this paper we study Temporal Difference (TD) learning with linear value function approximation. The classic TD algorithm is known to be unstable with linear function approximation and off-policy learning. Recently ... 详细信息
来源: 评论
Using supervised training signals of observable state dynamics to speed-up and improve reinforcement learning
Using supervised training signals of observable state dynami...
收藏 引用
ieee symposium on adaptive dynamic programming and reinforcement learning (ADPRL)
作者: Elliott, Daniel L. Anderson, Charles Colorado State Univ Dept Comp Sci Ft Collins CO 80523 USA
A common complaint about reinforcement learning (RL) is that it is too slow to learn a value function which gives good performance. This issue is exacerbated in continuous state spaces. This paper presents a straight-... 详细信息
来源: 评论